Orbital edge states in photonic lattices

Alberto Amo

honeypol.eu

Acknowledgements

- P. St-Jean
- F. Baboux
- M. Milicevic
 - V. Goblot
- D. Tanese
- J. Bloch

Sample fabrication

- A. Lemaître
 - I. Sagnes
- L. Le Gratiet

Trento

T. Ozawa I. Carusotto

D. Solnyshkov

G. Malpuech

G. Montambaux

E. Levi

E. Akkermans

ANALOG QUANTUM SIMULATORS FOR MANY-BODY DYNAMICS

Quantum Hall effect

Topological insulators

Graphene and 2D materials

Topological photonics: edge states

Z. Wang et al., Nature 461, 772 (2009)

Edge transport in Si resonators

Floquet topological insulators

M. C. Rechtsman et al., Nature **496**, 196 (2013)

$\textbf{Pseudo} \ \mathbb{Z}_2 \ \textbf{topological insulator}$

S. Barik et al., arxiv:1711.00478 L.Wu and X. Hu, PRL 114 , 223901 (2015)

For a review: L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photon. 8, 821 (2014), Nat. Phys. 12, 626 (2016).

Photonic lattices: new opportunities

S. Weimann et al., Nat. Mater. 16, 433 (2017)

Topological pumps

S. Mukherjee et al., Nat. Commun. 8, 13918 (2017) Y. E. Kraus et al., PRL 109, 106402 (2012)

Topological insulator lasers

B. Bahari et al., Science 358, 636 (2017)

Measurement of topological invariants

S. Mittal et al., Nat. Photonics 10, 180 (2016) W. Hu et al., PRX 5, 011012 (2015) F. Cardano, et al., Nat. Commun. 8, 15516 (2017)

Outline

Hamiltonian engineering in a polariton system

Measuring topological invariants in quasicrystals

Microcavity polaritons

$$|pol\rangle = X_k |exc\rangle + C_k |phot\rangle$$

• Confinement

Active element: lasing

- Interactions $\chi^{(3)}$
- Sensitivity to magnetic field

Confined polaritons

Other techniques: Stanford, Lausanne, Würzburg, Berlin, Sheffield, Cambridge, Southampton, Crete, Michigan...

C. Schneider et al., Rep. Prog. Phys. 80, 16503 (2017)

Confined polaritons

Coupled micropillars Photonic tunneling

Tight-binding building block (orbital)

Michaelis de Vasconcellos et al., APL 99, 101103 (2011)

Confined polaritons

Coupled micropillars Photonic tunneling

Michaelis de Vasconcellos et al., APL 99, 101103 (2011)

• Photonic structure with topological edge modes

Cavity with gain

1D lattice with topological edge states

Polyacetylene

The SSH Hamiltonian

The SSH Hamiltonian with polaritons

Both simultaneously present in the same chain

Orbital bands

Orbital bands: edge states

Orbital bands: edge states

Momentum space

Real space

Lasing in topological edge states

Topological robustness of lasing

$$H(k) = \begin{pmatrix} 0 & t + t'e^{ika} \\ t + t'e^{-ika} & 0 \end{pmatrix}$$

 $\{H, \sigma_z\} = 0$ (chiral symmetry)

Theoretical calculations

Random fluctuations in t, t'

Energy and **localization** of the edge state are robust against hopping energy fluctuations

Robustness to break down of chiral symmetry

Gapped states robust against on-site energy perturbation

Robustness to break down of chiral symmetry

Localization only weakly affected by on-site disorder

P. St-Jean et al

Quasi-crystals

- no translational symmetry
 - Iong range order
 - topological properties (high windings)

Penrose tiling

Fibonacci sequence

1175-1250

Substitution method

$$A \rightarrow BA$$

 $B \rightarrow A$
 $S_1 = A$ 1 \leftarrow Length of the Fibonacci "word"
 $S_2 = BA$ 2

Fibonacci potential

Fractal spectrum

Rev, Math. Physics 4, 1 (1992)

D. Tanese et al., PRL 112, 146404 (2014)

Synthetic dimension in 1D quasi-crystals

Characteristic function: periodic in ϕ

Synthetic dimension in 1D quasi-crystals

Characteristic function: periodic in ϕ

Synthetic dimension in 1D quasi-crystals

Fibonacci cavity

Effective Fabry-Pérot cavity of zero length but finite round-trip phase θ_{cav}

$$\mathcal{W}(\theta_{cav}) \equiv \frac{1}{2\pi} \int_0^{2\pi} d\phi \, \frac{d\theta_{cav} \left(\phi, q, k_m\right)}{d\phi} = 2 \, q \longleftarrow \text{gap label}$$

Accessible in the spectral properties

E. Levy et al., arxiv:1509.04028 (2015) J. Kellendonk & E. Prodan arXiv:1710.07681

Fibonacci cavities

N=55 structures

F. Baboux et al., PRB 95, 161114(R) (2017)

F. Baboux et al., PRB 95, 161114(R) (2017)

Spectral winding of interface states

The interface states traverse periodically the gaps

$$\mathcal{W}(\boldsymbol{\theta}_{cav}) = 2q$$

F. Baboux et al., PRB 95, 161114(R) (2017)

J. Kellendonk & E. Prodan arXiv:1710.07681

Polariton honeycomb lattice

See also: N. Y. Kim, et al. NJP **15**, 35032 (2013) K. Kusudo et al., PRB **87**, 214503 (2013).

Jacqmin *et al.*, PRL **112**, 116402 (2014)

Polariton honeycomb lattice: edges

p-bands – zigzag edge

 $k / (2\pi/3\sqrt{3}a)$

Milicevic et al., PRL 118, 107403 (2017)

Perspectives: polariton Chern insulator

Polariton Chern insulator

Bardyn et al., PRB 91, 161413(R) (2015)

Artificial gauge potential

H.-T. Lim et al., Nat. Commun. 8, 14540 (2017)

Emulation with polaritons

Lasing in topological edge states

P. St-Jean et al., Nat. Photon. **11**, 651 (2017) Topological invariants in Fibonacci quasi-crystal

D. Tanese et al., PRL 112, 146404 (2014) F. Baboux et al., PRB 95, 161114(R) (2017) **Dirac physics**

T. Jacqmin et al., PRL **112**, 116402 (2014)
M. Milicevic et al., 2D Mater. **2**, 034012 (2015)
M. Milićević et al., PRL **118**, 107403 (2017)

Flat band physics

F. Baboux et al., PRL **116**, 066402 (2016)

Spin-orbit coupling

V. G. Sala et al., PRX **5**, 011034 (2015)

Nonlinear

Abbarchi et al., Nat. Phys. **9**, 275 (2013)

S. R. K. Rodriguez, et al., Nat. Commun. **7**, 11887 (2016)

Hawking physics

H.S. Nguyen et al., PRL **114**, 036402 (2015)