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Optical probing of quantum Hall states
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Current approaches: 

(1) Transport (coherent but global)

(2) STM, SET (local but non-coherent)



Optical spectrum of quantum Hall states

Orlita, Potemski, 

Stromer, Kim
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As the electron-hole pair approaches the edge, the situ-
ation changes dramatically compared to the bulk because
the topologically protected edge states can exhibit elec-
tronic coherence that extends across the sample. The
radiation from such an extended object will generically
contain higher order multipole moments when its size ex-
ceeds the wavelength of light. To see this explicitly we
consider a cylindrically symmetric edge, where the mul-
tipole radiation pattern can be directly calculated. We
represent the magnetic vector potential in the symmetric
gauge A

0

= B
z

(�y, x)/2, where B
z

is the perpendicular
magnetic field and (x, y) are the in-plane coordinates of
the 2DES. In this gauge, we can order the single-particle
states in the nth Landau level into eigenstates |n, mi
(m � � |n|) of the canonical angular momentum oper-
ator L

z

/~ = xk
y

� yk
x

with eigenvalue �|n| � m, where
k = (k

x

, k
y

) is the in-plane wavevector.
To describe the spontaneously emitted field, we also

decompose the optical field into eigenstates of L
z

with
orbital angular momentum (OAM) ~` and longitudinal
momentum ~k. Such states are known as cylindrical vec-
tor harmonics and are closely related to the cylindrically
symmetric Laguerre-Gaussian modes within the paraxial
approximation [43]. In the symmetric gauge, the selec-
tion rules for light with OAM ~` follow directly from con-
servation of total L

z

and are given by |n, mi ! |n0, m0i,
where |n0| = |n| ± 1 and m0 = m � `. Here the ±1
term arises from the choice of one of the two circular po-
larizations of the light. The selection rule for n follows
from particle-hole symmetry and is well known for Dirac
systems [31], while the selection rules for m have not
been considered before. In the supplementary material,
we give a gauge independent derivation of these selection
rules [45]. As illustrated in Fig. 1(c), when the electron-
hole pair is excited at the edge of the sample, it can
recombine by emitting light with OAM. To understand
the scaling of the multipole emission with increasing `,
we note that light with OAM ` has on optical vortex
in the center of size greater than or equal to �`, where
� = �/2⇡. As an example, we show the profile of an
` = 100 mode in Fig. 1(d). Beyond this radius, however,
its magnitude is independent of `. This implies that the
emitted light will contain multipole contributions up to
maximum value of `

max

= r
e

/�, where r
e

is the radius of
the edge.

This analysis illustrates the two basic e↵ects we find
for integer quantum Hall states: the ability to optically
image the disorder landscape and the presence of large
multipole transitions for the edge states. These argu-
ments should generally apply to quantum Hall systems,
as well as other materials with topologically protected ex-
tended electronic states such as those found in the quan-
tum spin-Hall e↵ect or in topological insulators. Focus-
ing on quantum Hall systems in Dirac materials, we now
discuss these e↵ects from a more microscopic picture.

Dirac Model.—The low-energy Hamiltonian in a 2D
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FIG. 1: (a) Low-energy band structure of graphene-like Dirac
material for zero magnetic field. Here m0 and v are the Dirac
mass and velocity, respectively, and we only show one of the
two valleys. (b) In the presence of a large magnetic field, the
electronic states are quantized into Landau levels. Disorder
in the sample leads to spatial variations in the optical transi-
tion energies, which can be optically imaged. (c) An electron
excited at the edge of a cylindrically symmetric sample will
emit light with orbital angular momentum ~` by recombining
with a hole in the state m

0 = m � `. (d) Amplitude of the
cylindrical vector harmonic |E`| for ` = 100 with �0 = 600 nm
and index of refraction n0 = 3.2. Because the size of the opti-
cal vortex increases as �`, an edge state with radius re (black
circle) can only spontaneously emit into modes with ` . re/�.

material with an underlying hexagonal lattice takes the
Dirac form (neglecting spin), H = (�1)s~v k·⌧+m

0

v2⌧
z

,
where s = 0 or s = 1 for the K or K’ valley, respec-
tively, v is the speed of light for the Dirac fermions,
k = (k

x

, k
y

) is the in-plane wavevector, ⌧ = (⌧
x

, ⌧
y

, ⌧
z

)
are Pauli matrices operating on the Dirac pseudospin,
and m

0

is the e↵ective Dirac mass. At zero magnetic
field the spectrum of H takes the Dirac form E(k) =
±
p

m2

0

v4 + v2|k|2 as shown in Fig. 1(a). For large per-
pendicular magnetic fields B

z

, the energy spectrum of
H is quantized into degenerate Landau levels at ener-
gies E

n

= sign(n)
p

m2

0

v4 + ~2!2

c

|n|, where n is an in-
teger, !

c

=
p

2v/`
c

is the cycolotron frequency and
`
c

=
p

~/eB
z

is the magnetic length.
Consider the interaction of this system with an ex-

ternal optical field. The light-matter interaction can be
found through the usual prescription k ! k � eA/c

H
int

= (�1)s

evp
2c

[⌧
+

A⇤
+

(x, y) + ⌧�A⇤
�(x, y)]e�i!t + h.c.,

(1)
where A± = (A

x

± iA
y

)/
p

2 are the circularly polarized
components of the vector potential A in the plane of the
2D material. Due to particle-hole symmetry in H, the
pseudo-spin operators ⌧± couple the nth Landau level to
both n ± 1 and �n ± 1. This leads to the selection rule
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FIG. 3: (a) The disorder potential U(x, y) for the inter-band
transitions between Landau levels. (b) U(x, y) can be re-
constructed by correlating the amplitude of spatially-resolved
scattered light with the frequency of the incoming probe. We
took the 2DDM to be embedded in GaP (n0 = 3.2) in a
10 T magnetic field with �0 = 1 µm. The optical imaging is
able to resolve spatial features down to the di↵raction limit
�0/2n0 ⇡ 160 nm.

emission from the localized states in the bulk of the 2D
material at integer filling. In particular, we show that the
disorder landscape can be reconstructed through optical
imaging of the scattered light. We can include disorder
in the Dirac model by adding all terms consistent with
the symmetries of the hexagonal lattice (neglecting inter-
valley scattering) [61]

H
dis

= u
0

(r)I + u(r) · ⌧ . (4)

The first term u
0

corresponds to long range diagonal dis-
order arising from, e.g., charged impurities, while the
other terms are associated with shorter range e↵ects such
as, e.g., variations in the two sub-lattice potentials (u

z

),
tunneling rates (u

x,y

), or the presence of vacancies and
defects.

The projection of H
dis

into the Landau levels leads
to smoothing of the disorder on the scale of `

c

. This
produces a potential landscape for each Landau level
U

n

(x, y) = hx, y|Tr
⌧

(P
n

H
dis

P
n

)|x, yi, where P
n

is a pro-
jector into the nth Landau level and Tr

⌧

traces over the
pseudospin states. This landscape gives rise to (1) an adi-
abatic shift of the edge position and (2) localized states
in the bulk. Thus, the edge multipole e↵ects remain the
same, while the bulk radiation becomes dominated by
transitions between localized states, each with a di↵er-
ent spectral signature [see Fig. 1(a)].

To see how these spectral signatures can be used to
image the disorder landscape, we consider near resonant
excitation between Landau levels with �

+

polarized light
and a probe whose frequency !

`

is scanned through the
resonance ~!

`

= ✏
n+1

� ✏�n

. The disorder in the optical
transition frequency U(x, y) = U

n+1

(x, y)�U�n

(x, y) for
n = 0 is shown in Fig. 3(a). To obtain the spatial pro-
file of emitted light we approximate the far field emis-
sion pattern by a convolution of U(x, y) with the filter
function ⌘

�

(r) = sin(4⇡r/�)/⇡2r2, which arises from the

di↵raction limit. Here � = [(hn
0

/c)(✏
n+1

�✏�n

)]�1 is the
central wavelength of emitted light, and n

0

is the index
of refraction of the surrounding substrate. We construct
the disorder potential by finding the probe frequency at
which the local scattered light reaches its maximum am-
plitude. The resulting optically reconstructed disorder
potential is shown in Fig. 3(b). In practice, this recon-
struction will be limited by the numerical aperture NA of
the imaging system. The di↵raction limit in free-space
is NA 1, using, e.g., a solid-immersion-lens, one can
enhance the upper limit of the NA by the index of re-
fraction of the lens [62]. Alternatively, super-resolution
techniques would enable imaging far below the di↵raction
limit [52, 53].

As we are treating the disorder in degenerate, first-
order perturbation theory, we can see from Eq. (3) that,
for massless Dirac Fermions, U(r) is dominated by the ⌧

x

disorder, while, for su�ciently massive Dirac fermions,
U(r) is dominated by ⌧

z

disorder. A related measure-
ment in massive 2DDMs could be used to indirectly map
out the diagonal disorder term u

0

(r) by going away from
integer filling. In particular, the exciton binding energy
will vary with the local carrier density due to screening
e↵ects. Thus, mapping out the exciton line across the
sample would reveal variations in the local carrier den-
sity, which, in the partially filled, disordered quantum
Hall regime, are directly correlated with the underlying
disorder potential [2, 63].
Electron-Electron Interactions.– In our analysis, we

have largely neglected the e↵ect of electron-electron inter-
actions on both the disorder landscape and the optically
excited electron-hole pair. Near integer filling, the inter-
actions will have a minimal e↵ect on the bare disorder
potential because the electronic state is incompressible
and does not e↵ectively screen the disorder [2, 63].

The dominant e↵ects of the electron-hole interactions
is to lead to Landau level mixing and magnetexciton for-
mation, which have to be considered separately for the
bulk and the edge. On the edge, magnetoxciton e↵ects
are weak because of the predominantly linear dispersion
of the edge states. Landau level mixing can then also be
ignored because the electron and hole are both delocal-
ized and interact weakly. For the bulk, our analysis as-
sumes that the magnetoexciton binding energy ✏

b

is much
less than the strength of the disorder potential. However,
in the opposite limit of strongly bound excitons, the ⌧
disorder will lead to spatial variations in ✏

b

. As a result,
we expect our conclusions about mapping the ⌧ disorder
to remain valid in this limit, provided that the disorder
potential contains long-range correlations compared to
the magnetoexciton Bohr radius.
Conclusion.—We have studied the properties of the

optical radiation from integer quantum Hall edge states
in Dirac materials. We showed that the optical emission
from the bulk of the 2DDM reflects the disorder land-
scape and, at the edge, high-order multipole transitions

M. Gullans et al. PRB (2017)
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FIG. 3: (a) The disorder potential U(x, y) for the inter-band
transitions between Landau levels. (b) U(x, y) can be re-
constructed by correlating the amplitude of spatially-resolved
scattered light with the frequency of the incoming probe. We
took the 2DDM to be embedded in GaP (n0 = 3.2) in a
10 T magnetic field with �0 = 1 µm. The optical imaging is
able to resolve spatial features down to the di↵raction limit
�0/2n0 ⇡ 160 nm.

emission from the localized states in the bulk of the 2D
material at integer filling. In particular, we show that the
disorder landscape can be reconstructed through optical
imaging of the scattered light. We can include disorder
in the Dirac model by adding all terms consistent with
the symmetries of the hexagonal lattice (neglecting inter-
valley scattering) [61]

H
dis

= u
0

(r)I + u(r) · ⌧ . (4)

The first term u
0

corresponds to long range diagonal dis-
order arising from, e.g., charged impurities, while the
other terms are associated with shorter range e↵ects such
as, e.g., variations in the two sub-lattice potentials (u

z

),
tunneling rates (u

x,y

), or the presence of vacancies and
defects.

The projection of H
dis

into the Landau levels leads
to smoothing of the disorder on the scale of `

c

. This
produces a potential landscape for each Landau level
U

n

(x, y) = hx, y|Tr
⌧

(P
n

H
dis

P
n

)|x, yi, where P
n

is a pro-
jector into the nth Landau level and Tr

⌧

traces over the
pseudospin states. This landscape gives rise to (1) an adi-
abatic shift of the edge position and (2) localized states
in the bulk. Thus, the edge multipole e↵ects remain the
same, while the bulk radiation becomes dominated by
transitions between localized states, each with a di↵er-
ent spectral signature [see Fig. 1(a)].

To see how these spectral signatures can be used to
image the disorder landscape, we consider near resonant
excitation between Landau levels with �

+

polarized light
and a probe whose frequency !

`

is scanned through the
resonance ~!

`

= ✏
n+1

� ✏�n

. The disorder in the optical
transition frequency U(x, y) = U

n+1

(x, y)�U�n

(x, y) for
n = 0 is shown in Fig. 3(a). To obtain the spatial pro-
file of emitted light we approximate the far field emis-
sion pattern by a convolution of U(x, y) with the filter
function ⌘

�

(r) = sin(4⇡r/�)/⇡2r2, which arises from the

di↵raction limit. Here � = [(hn
0

/c)(✏
n+1

�✏�n

)]�1 is the
central wavelength of emitted light, and n

0

is the index
of refraction of the surrounding substrate. We construct
the disorder potential by finding the probe frequency at
which the local scattered light reaches its maximum am-
plitude. The resulting optically reconstructed disorder
potential is shown in Fig. 3(b). In practice, this recon-
struction will be limited by the numerical aperture NA of
the imaging system. The di↵raction limit in free-space
is NA 1, using, e.g., a solid-immersion-lens, one can
enhance the upper limit of the NA by the index of re-
fraction of the lens [62]. Alternatively, super-resolution
techniques would enable imaging far below the di↵raction
limit [52, 53].

As we are treating the disorder in degenerate, first-
order perturbation theory, we can see from Eq. (3) that,
for massless Dirac Fermions, U(r) is dominated by the ⌧

x

disorder, while, for su�ciently massive Dirac fermions,
U(r) is dominated by ⌧

z

disorder. A related measure-
ment in massive 2DDMs could be used to indirectly map
out the diagonal disorder term u

0

(r) by going away from
integer filling. In particular, the exciton binding energy
will vary with the local carrier density due to screening
e↵ects. Thus, mapping out the exciton line across the
sample would reveal variations in the local carrier den-
sity, which, in the partially filled, disordered quantum
Hall regime, are directly correlated with the underlying
disorder potential [2, 63].
Electron-Electron Interactions.– In our analysis, we

have largely neglected the e↵ect of electron-electron inter-
actions on both the disorder landscape and the optically
excited electron-hole pair. Near integer filling, the inter-
actions will have a minimal e↵ect on the bare disorder
potential because the electronic state is incompressible
and does not e↵ectively screen the disorder [2, 63].

The dominant e↵ects of the electron-hole interactions
is to lead to Landau level mixing and magnetexciton for-
mation, which have to be considered separately for the
bulk and the edge. On the edge, magnetoxciton e↵ects
are weak because of the predominantly linear dispersion
of the edge states. Landau level mixing can then also be
ignored because the electron and hole are both delocal-
ized and interact weakly. For the bulk, our analysis as-
sumes that the magnetoexciton binding energy ✏

b

is much
less than the strength of the disorder potential. However,
in the opposite limit of strongly bound excitons, the ⌧
disorder will lead to spatial variations in ✏

b

. As a result,
we expect our conclusions about mapping the ⌧ disorder
to remain valid in this limit, provided that the disorder
potential contains long-range correlations compared to
the magnetoexciton Bohr radius.
Conclusion.—We have studied the properties of the

optical radiation from integer quantum Hall edge states
in Dirac materials. We showed that the optical emission
from the bulk of the 2DDM reflects the disorder land-
scape and, at the edge, high-order multipole transitions

Mapping disorder landscape
2

sub-wavelength correlations [57, 58].

As the electron-hole pair approaches the edge, the sit-
uation changes dramatically because these states exhibit
electronic coherence that extends across the entire sam-
ple. Furthermore, due to the magnetic field, the edge
states carry a large angular momentum, which can be
partially transferred into the optical radiation during
emission. Such a transfer process is necessarily associ-
ated with the presence of higher order multipole moments
in the far-field radiation. To illustrate this point more
concretely, we consider a cylindrically symmetric edge,
where the multipole radiation pattern can be calculated
analytically. We represent the magnetic vector potential
in the symmetric gauge A

0

= B
z

(�y, x)/2, where B
z

is the perpendicular magnetic field and (x, y) are the in-
plane coordinates of the 2DES. In this gauge, the angular
momentum is a good quantum number and we can or-
der the single-particle states in the nth Landau level into
eigenstates |n, mi (m � � |n|) of the angular momentum
operator L

z

/~ = xk
y

� yk
x

with eigenvalue �m, where
k = (k

x

, k
y

) is the in-plane wavevector.

To describe the spontaneously emitted field, we also
decompose the optical field into eigenstates of L

z

with
orbital angular momentum (OAM) ~` and longitudinal
momentum ~k. Such states are known as cylindrical vec-
tor harmonics and are closely related to the cylindrically
symmetric Laguerre-Gaussian modes within the paraxial
approximation [59]. An electron in the conduction band
with angular momentum m can conserve total angular
momentum by recombining with a hole in the valence
band with angular momentum m0 and emitting light with
OAM ` = m�m0 [see Fig. 1(b)]. In the supplemental ma-
terial, we give a gauge independent derivation of this se-
lection rule [60]. We remark that these arguments should
generally apply to integer quantum Hall systems, as well
as other materials with topological edge states. Focus-
ing on quantum Hall systems in Dirac materials, we now
discuss these e↵ects from a more microscopic picture.

Dirac Model.—The low-energy Hamiltonian in a 2D
material with an underlying hexagonal lattice takes the
Dirac form in each valley (neglecting spin), H = ~v k ·
⌧ + m

0

v2⌧
z

, where v is the Dirac velocity, k = (k
x

, k
y

)
is the in-plane wavevector, ⌧ = (⌧

x

, ⌧
y

, ⌧
z

) are Pauli ma-
trices operating on the Dirac pseudospin, and m

0

is the
e↵ective Dirac mass. At zero magnetic field the spec-
trum of H is E(k) = ±

p
m2

0

v4 + v2|k|2, as shown in
Fig. 1(a). For large B

z

, the energy spectrum is quan-
tized into degenerate Landau levels at energies E

n

=
sign(n)

p
m2

0

v4 + ~2!2

c

|n|, where n is an integer, !
c

=p
2v/`

c

is the cycolotron frequency, and `
c

=
p

~/eB
z

is
the magnetic length. Throughout this work we restrict
our discussion to the K-valley for simplicity and neglect
inter-valley scattering processes.

Consider the interaction of this system with an ex-
ternal optical field. The light-matter interaction can be

2DESB
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FIG. 1: (a) In the presence of a large magnetic field, the
electronic states of the 2DES are quantized into Landau lev-
els, which we index by their angular momentum �~m. The
majority of the states in the bulk are localized by disorder,
leading to inter-band radiation dominated by dipole emission.
The spectrum of this radiation is spatially correlated with the
disorder potential. Here Ec(v) refer to the energy of the con-
duction (valence) band and EF is the Fermi energy. (b) An
electron excited at the edge of the system can emit light with
orbital angular momentum ~` by recombining with a hole in
the state m

0 = m � `. Here we have taken the edge states
in the conduction band to have the opposite slope from the
valence band so that the edge emission is spectrally distin-
guishable from the bulk.

found through the usual prescription k ! k � eA/c

H
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(x, y) + ⌧�A⇤
�(x, y)]e�i!t + h.c., (1)

where A± = (A
x

± iA
y

)/
p

2 are the circularly polarized
components of the vector potential A in the plane of
the 2D material. Due to the Dirac band structure, the
pseudo-spin operators ⌧± couple the nth Landau level to
both n±1 and �n±1. This leads to the optical selection
rule: n ! n0 with |n0| = |n| ± 1 [34].

We represent the single-particle states in the symmet-
ric gauge, in which case the eigenstates |n, mi take the
form [61]
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whose eigenvalues are the energy eigenvalues E
n

. We
represent the OAM eigenstates for the optical field in
the basis of cylindrical vector harmonics [59], which take
the form E(x, y, z) =

P
`,k

E
`,k

(r)ei`✓+ikz, where r = |u|
and ✓ = tan�1(y/x).

If Fermi level is in between two transitions 

|n,mi

|n+ 1,mi
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As the electron-hole pair approaches the edge, the situ-
ation changes dramatically compared to the bulk because
the topologically protected edge states can exhibit elec-
tronic coherence that extends across the sample. The
radiation from such an extended object will generically
contain higher order multipole moments when its size ex-
ceeds the wavelength of light. To see this explicitly we
consider a cylindrically symmetric edge, where the mul-
tipole radiation pattern can be directly calculated. We
represent the magnetic vector potential in the symmetric
gauge A

0

= B
z

(�y, x)/2, where B
z

is the perpendicular
magnetic field and (x, y) are the in-plane coordinates of
the 2DES. In this gauge, we can order the single-particle
states in the nth Landau level into eigenstates |n, mi
(m � � |n|) of the canonical angular momentum oper-
ator L

z

/~ = xk
y

� yk
x

with eigenvalue �|n| � m, where
k = (k

x

, k
y

) is the in-plane wavevector.
To describe the spontaneously emitted field, we also

decompose the optical field into eigenstates of L
z

with
orbital angular momentum (OAM) ~` and longitudinal
momentum ~k. Such states are known as cylindrical vec-
tor harmonics and are closely related to the cylindrically
symmetric Laguerre-Gaussian modes within the paraxial
approximation [43]. In the symmetric gauge, the selec-
tion rules for light with OAM ~` follow directly from con-
servation of total L

z

and are given by |n, mi ! |n0, m0i,
where |n0| = |n| ± 1 and m0 = m � `. Here the ±1
term arises from the choice of one of the two circular po-
larizations of the light. The selection rule for n follows
from particle-hole symmetry and is well known for Dirac
systems [31], while the selection rules for m have not
been considered before. In the supplementary material,
we give a gauge independent derivation of these selection
rules [45]. As illustrated in Fig. 1(c), when the electron-
hole pair is excited at the edge of the sample, it can
recombine by emitting light with OAM. To understand
the scaling of the multipole emission with increasing `,
we note that light with OAM ` has on optical vortex
in the center of size greater than or equal to �`, where
� = �/2⇡. As an example, we show the profile of an
` = 100 mode in Fig. 1(d). Beyond this radius, however,
its magnitude is independent of `. This implies that the
emitted light will contain multipole contributions up to
maximum value of `

max

= r
e

/�, where r
e

is the radius of
the edge.

This analysis illustrates the two basic e↵ects we find
for integer quantum Hall states: the ability to optically
image the disorder landscape and the presence of large
multipole transitions for the edge states. These argu-
ments should generally apply to quantum Hall systems,
as well as other materials with topologically protected ex-
tended electronic states such as those found in the quan-
tum spin-Hall e↵ect or in topological insulators. Focus-
ing on quantum Hall systems in Dirac materials, we now
discuss these e↵ects from a more microscopic picture.

Dirac Model.—The low-energy Hamiltonian in a 2D
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FIG. 1: (a) Low-energy band structure of graphene-like Dirac
material for zero magnetic field. Here m0 and v are the Dirac
mass and velocity, respectively, and we only show one of the
two valleys. (b) In the presence of a large magnetic field, the
electronic states are quantized into Landau levels. Disorder
in the sample leads to spatial variations in the optical transi-
tion energies, which can be optically imaged. (c) An electron
excited at the edge of a cylindrically symmetric sample will
emit light with orbital angular momentum ~` by recombining
with a hole in the state m

0 = m � `. (d) Amplitude of the
cylindrical vector harmonic |E`| for ` = 100 with �0 = 600 nm
and index of refraction n0 = 3.2. Because the size of the opti-
cal vortex increases as �`, an edge state with radius re (black
circle) can only spontaneously emit into modes with ` . re/�.

material with an underlying hexagonal lattice takes the
Dirac form (neglecting spin), H = (�1)s~v k·⌧+m

0

v2⌧
z

,
where s = 0 or s = 1 for the K or K’ valley, respec-
tively, v is the speed of light for the Dirac fermions,
k = (k

x

, k
y

) is the in-plane wavevector, ⌧ = (⌧
x

, ⌧
y

, ⌧
z

)
are Pauli matrices operating on the Dirac pseudospin,
and m

0

is the e↵ective Dirac mass. At zero magnetic
field the spectrum of H takes the Dirac form E(k) =
±
p

m2

0

v4 + v2|k|2 as shown in Fig. 1(a). For large per-
pendicular magnetic fields B

z

, the energy spectrum of
H is quantized into degenerate Landau levels at ener-
gies E

n

= sign(n)
p
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v4 + ~2!2

c

|n|, where n is an in-
teger, !

c

=
p

2v/`
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is the cycolotron frequency and
`
c

=
p

~/eB
z

is the magnetic length.
Consider the interaction of this system with an ex-

ternal optical field. The light-matter interaction can be
found through the usual prescription k ! k � eA/c

H
int

= (�1)s

evp
2c

[⌧
+

A⇤
+

(x, y) + ⌧�A⇤
�(x, y)]e�i!t + h.c.,

(1)
where A± = (A

x

± iA
y

)/
p

2 are the circularly polarized
components of the vector potential A in the plane of the
2D material. Due to particle-hole symmetry in H, the
pseudo-spin operators ⌧± couple the nth Landau level to
both n ± 1 and �n ± 1. This leads to the selection rule
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sub-wavelength correlations [57, 58].

As the electron-hole pair approaches the edge, the sit-
uation changes dramatically because these states exhibit
electronic coherence that extends across the entire sam-
ple. Furthermore, due to the magnetic field, the edge
states carry a large angular momentum, which can be
partially transferred into the optical radiation during
emission. Such a transfer process is necessarily associ-
ated with the presence of higher order multipole moments
in the far-field radiation. To illustrate this point more
concretely, we consider a cylindrically symmetric edge,
where the multipole radiation pattern can be calculated
analytically. We represent the magnetic vector potential
in the symmetric gauge A

0

= B
z

(�y, x)/2, where B
z

is the perpendicular magnetic field and (x, y) are the in-
plane coordinates of the 2DES. In this gauge, the angular
momentum is a good quantum number and we can or-
der the single-particle states in the nth Landau level into
eigenstates |n, mi (m � � |n|) of the angular momentum
operator L

z

/~ = xk
y

� yk
x

with eigenvalue �m, where
k = (k

x

, k
y

) is the in-plane wavevector.

To describe the spontaneously emitted field, we also
decompose the optical field into eigenstates of L

z

with
orbital angular momentum (OAM) ~` and longitudinal
momentum ~k. Such states are known as cylindrical vec-
tor harmonics and are closely related to the cylindrically
symmetric Laguerre-Gaussian modes within the paraxial
approximation [59]. An electron in the conduction band
with angular momentum m can conserve total angular
momentum by recombining with a hole in the valence
band with angular momentum m0 and emitting light with
OAM ` = m�m0 [see Fig. 1(b)]. In the supplemental ma-
terial, we give a gauge independent derivation of this se-
lection rule [60]. We remark that these arguments should
generally apply to integer quantum Hall systems, as well
as other materials with topological edge states. Focus-
ing on quantum Hall systems in Dirac materials, we now
discuss these e↵ects from a more microscopic picture.

Dirac Model.—The low-energy Hamiltonian in a 2D
material with an underlying hexagonal lattice takes the
Dirac form in each valley (neglecting spin), H = ~v k ·
⌧ + m

0

v2⌧
z

, where v is the Dirac velocity, k = (k
x

, k
y

)
is the in-plane wavevector, ⌧ = (⌧

x

, ⌧
y

, ⌧
z

) are Pauli ma-
trices operating on the Dirac pseudospin, and m

0

is the
e↵ective Dirac mass. At zero magnetic field the spec-
trum of H is E(k) = ±

p
m2

0

v4 + v2|k|2, as shown in
Fig. 1(a). For large B

z

, the energy spectrum is quan-
tized into degenerate Landau levels at energies E

n

=
sign(n)

p
m2

0

v4 + ~2!2

c

|n|, where n is an integer, !
c

=p
2v/`

c

is the cycolotron frequency, and `
c

=
p

~/eB
z

is
the magnetic length. Throughout this work we restrict
our discussion to the K-valley for simplicity and neglect
inter-valley scattering processes.

Consider the interaction of this system with an ex-
ternal optical field. The light-matter interaction can be
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FIG. 1: (a) In the presence of a large magnetic field, the
electronic states of the 2DES are quantized into Landau lev-
els, which we index by their angular momentum �~m. The
majority of the states in the bulk are localized by disorder,
leading to inter-band radiation dominated by dipole emission.
The spectrum of this radiation is spatially correlated with the
disorder potential. Here Ec(v) refer to the energy of the con-
duction (valence) band and EF is the Fermi energy. (b) An
electron excited at the edge of the system can emit light with
orbital angular momentum ~` by recombining with a hole in
the state m

0 = m � `. Here we have taken the edge states
in the conduction band to have the opposite slope from the
valence band so that the edge emission is spectrally distin-
guishable from the bulk.

found through the usual prescription k ! k � eA/c

H
int

=
evp
2c

[⌧
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A⇤
+

(x, y) + ⌧�A⇤
�(x, y)]e�i!t + h.c., (1)

where A± = (A
x

± iA
y

)/
p

2 are the circularly polarized
components of the vector potential A in the plane of
the 2D material. Due to the Dirac band structure, the
pseudo-spin operators ⌧± couple the nth Landau level to
both n±1 and �n±1. This leads to the optical selection
rule: n ! n0 with |n0| = |n| ± 1 [34].

We represent the single-particle states in the symmet-
ric gauge, in which case the eigenstates |n, mi take the
form [61]
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operator on the Landua level eigenfunctions, (↵
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whose eigenvalues are the energy eigenvalues E
n

. We
represent the OAM eigenstates for the optical field in
the basis of cylindrical vector harmonics [59], which take
the form E(x, y, z) =

P
`,k

E
`,k

(r)ei`✓+ikz, where r = |u|
and ✓ = tan�1(y/x).
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Radiation from the edge.—We first consider the light
emission from the edge states of the quantum Hall sys-
tem. The edge can either be formed by an external con-
fining potential, at an interface with vacuum or another
material, or from an abrupt change in the local dielectric
environment. An externally applied potential V (r) will
generally lead to a uniform shift E

n

! E
n

+ V (r
m

). As
a result, the optical transitions between edge states will
be degenerate with the transitions in the bulk. In order
to selectively address the edge states, it is desirable to a
have a di↵erence in dispersion between the edge states in
the conduction and valence bands [see Fig. 1(b)]. Such a
di↵erence in slope can arise at a sharp interface with vac-
uum or another material due to local modifications of the
band structure. In the case of graphene with a vacuum
interface, the dispersion of the quantum Hall edge states
depends on whether the edge termination is of armchair
or zig-zag type [62]. For |n| > 0, however, all edge states
disperse with the opposite sign in the conduction and
valence band, which allows these optical transitions to
be spectrally distinguished from the bulk. This analy-
sis can be generalized to include a Dirac mass and one
finds that the opposite slope of the conduction and va-
lence band is preserved. Alternatively, to avoid defects
associated with a sharp interface, one can consider an
edge formed by a change in the dielectric environment,
e.g., an additional layer of h-BN. In this case, the change
in the dielectric screening will modify the contribution
of electron-electron interactions to the inter-band Lan-
dau level transitions [41]. The adiabatic connection of
the Landau levels between these two regions will lead to
optically addressable edge states.

For the case of a cylindrically symmetric edge, the edge
states are simply given by the angular momentum states
|n, mi with r

m

⇠ r
e

, the radius of the edge. As we
noted above, one can achieve optical Raman transitions
between edge states by transferring orbital angular mo-
mentum into the light field. To understand the scaling
of the multipole emission with increasing `, we note that
light with OAM ` has on optical vortex in the center of
size greater than or equal to �`, where � = �/2⇡ [see
Fig. 2(b)]. Beyond this radius, the average intensity of
the light is independent of `. This implies that the emit-
ted light will contain multipole contributions up to the
maximum value `

max

= r
e

/�, where r
e

is the radius of
the edge. In addition, `

max

will be cut o↵ by the finite
coherence length of the edge states, which arises primar-
ily from electron-electron interactions and phonon scat-
tering. For integer quantum Hall states in GaAs, the
coherence length was measured via transport methods
to be roughly (10-20) µm [4]. Our work shows that the
multipole radiation provides an optical means to directly
probe the coherence length.

To understand this e↵ect more quantitatively, we de-
compose the radiative emission rate �

m

of an excited
electron in the state |n + 1, mi into all the multipole mo-
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FIG. 2: (a) Low-energy band structure of graphene-like Dirac
material for zero magnetic field. Here m0 and v are the Dirac
mass and velocity, respectively, and we only show one of the
two valleys. (b) Amplitude of the cylindrical vector harmonic
|E`| for ` = 100 with �0 = 600 nm and index of refraction
n0 = 3.2. Because the size of the optical vortex increases
as �`, an edge state with radius re (black circle) can only
spontaneously emit into modes with ` . re/�. (c) Branching
ratio for spontaneous emission into di↵erent ` modes for two
di↵erent values of re/�. We took Dirac parameters for WSe2
(m0v

2 ⇡ 1 eV and v ⇡ 106 m/s [63]) embedded in GaP,
Bz = 11 T, n = 0, and � = 30 nm.

ments �
m

=
P

`�0

�`

m

[64]. Each individual component
can be found using Fermi’s golden rule for the emission
into the free space modes with a specified `. We give the
matrix elements in the supplemental material [60]. Two
illustrative examples are shown in Fig. 2(c) for the n = 0
to n = 1 transition with Dirac parameters for single-
layer WSe

2

. We plot the branching ratio �`

m

/�
m

for two
di↵erent edge radii, which confirms the scaling analysis
from above. For r

e

= 1.5 µm we find a nearly uniform
distribution for the spontaneous emission out to ` = 50.
Including disorder will modify shape of the distributions
in Fig. 2(c), but it will not reduce `

max

, which is simply
a result of the large coherence length of the edge states
compared to �.

These large multipole moments for the quantum Hall
edge states may also be useful for applications that make
use of light with large orbital angular momentum [65].
For example, placing the 2DES in a cavity and using
the pumping scheme in Fig. 1(b), would enable lasing
with orbital angular momentum by tuning a Laguerre-
Gaussian mode of the cavity into resonance with the as-
sociated Raman transition for the edge state.
Radiation from the bulk.— We now consider the optical

emission from the localized states in the bulk of the 2D
material. In particular, we show that the disorder land-
scape can be reconstructed through optical imaging of
the scattered light. For simplicity, we consider circularly

2⇡redge/� = 50

2⇡redge/� = 3

multipole emission

2

sub-wavelength correlations [57, 58].

As the electron-hole pair approaches the edge, the sit-
uation changes dramatically because these states exhibit
electronic coherence that extends across the entire sam-
ple. Furthermore, due to the magnetic field, the edge
states carry a large angular momentum, which can be
partially transferred into the optical radiation during
emission. Such a transfer process is necessarily associ-
ated with the presence of higher order multipole moments
in the far-field radiation. To illustrate this point more
concretely, we consider a cylindrically symmetric edge,
where the multipole radiation pattern can be calculated
analytically. We represent the magnetic vector potential
in the symmetric gauge A

0

= B
z

(�y, x)/2, where B
z

is the perpendicular magnetic field and (x, y) are the in-
plane coordinates of the 2DES. In this gauge, the angular
momentum is a good quantum number and we can or-
der the single-particle states in the nth Landau level into
eigenstates |n, mi (m � � |n|) of the angular momentum
operator L

z

/~ = xk
y

� yk
x

with eigenvalue �m, where
k = (k

x

, k
y

) is the in-plane wavevector.

To describe the spontaneously emitted field, we also
decompose the optical field into eigenstates of L

z

with
orbital angular momentum (OAM) ~` and longitudinal
momentum ~k. Such states are known as cylindrical vec-
tor harmonics and are closely related to the cylindrically
symmetric Laguerre-Gaussian modes within the paraxial
approximation [59]. An electron in the conduction band
with angular momentum m can conserve total angular
momentum by recombining with a hole in the valence
band with angular momentum m0 and emitting light with
OAM ` = m�m0 [see Fig. 1(b)]. In the supplemental ma-
terial, we give a gauge independent derivation of this se-
lection rule [60]. We remark that these arguments should
generally apply to integer quantum Hall systems, as well
as other materials with topological edge states. Focus-
ing on quantum Hall systems in Dirac materials, we now
discuss these e↵ects from a more microscopic picture.

Dirac Model.—The low-energy Hamiltonian in a 2D
material with an underlying hexagonal lattice takes the
Dirac form in each valley (neglecting spin), H = ~v k ·
⌧ + m
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, where v is the Dirac velocity, k = (k
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is the in-plane wavevector, ⌧ = (⌧

x
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, ⌧
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) are Pauli ma-
trices operating on the Dirac pseudospin, and m

0

is the
e↵ective Dirac mass. At zero magnetic field the spec-
trum of H is E(k) = ±

p
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0

v4 + v2|k|2, as shown in
Fig. 1(a). For large B

z

, the energy spectrum is quan-
tized into degenerate Landau levels at energies E
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is
the magnetic length. Throughout this work we restrict
our discussion to the K-valley for simplicity and neglect
inter-valley scattering processes.

Consider the interaction of this system with an ex-
ternal optical field. The light-matter interaction can be
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FIG. 1: (a) In the presence of a large magnetic field, the
electronic states of the 2DES are quantized into Landau lev-
els, which we index by their angular momentum �~m. The
majority of the states in the bulk are localized by disorder,
leading to inter-band radiation dominated by dipole emission.
The spectrum of this radiation is spatially correlated with the
disorder potential. Here Ec(v) refer to the energy of the con-
duction (valence) band and EF is the Fermi energy. (b) An
electron excited at the edge of the system can emit light with
orbital angular momentum ~` by recombining with a hole in
the state m

0 = m � `. Here we have taken the edge states
in the conduction band to have the opposite slope from the
valence band so that the edge emission is spectrally distin-
guishable from the bulk.

found through the usual prescription k ! k � eA/c
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where A± = (A
x

± iA
y

)/
p

2 are the circularly polarized
components of the vector potential A in the plane of
the 2D material. Due to the Dirac band structure, the
pseudo-spin operators ⌧± couple the nth Landau level to
both n±1 and �n±1. This leads to the optical selection
rule: n ! n0 with |n0| = |n| ± 1 [34].

We represent the single-particle states in the symmet-
ric gauge, in which case the eigenstates |n, mi take the
form [61]
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whose eigenvalues are the energy eigenvalues E
n

. We
represent the OAM eigenstates for the optical field in
the basis of cylindrical vector harmonics [59], which take
the form E(x, y, z) =

P
`,k

E
`,k

(r)ei`✓+ikz, where r = |u|
and ✓ = tan�1(y/x).
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We show how to realize two-component fractional quantum Hall phases in monolayer graphene by
optically driving the system. A laser is tuned into resonance between two Landau levels of graphene
and acts as a e↵ective tunneling term between these states. We study systems with small number
of electrons for filling factor 2/3 using exact-diagonalization. When the lower state is the first
Landau level, we find that tuning the e↵ective tunneling amplitude causes the system to undergo
a phase transition from a spin-singlet phase to a particle-hole conjugate 1/3 Laughlin phase of
the antisymmetric optical dressed states. This phase transition can be traced to the presence of
additional cross interaction terms that arise in the rotating wave approximation. These results pave
the way towards the realization of new phases, as well as the control of phase transitions, in graphene
quantum Hall systems using optical fields and integrated photonic structures.

The fractional quantum Hall (FQH) e↵ect is a fasci-
nating phenomena in condensed matter physics, whereby
electron-electron interaction fully determine the behav-
ior of the system [1–3]. While initial considerations fo-
cused on systems with no internal degrees of freedom,
later it was realized that the electron spin plays an im-
portant role for several filling factors [4–7], which was
confirmed experimentally [8, 9]. More generally, mul-
ticomponent FQH phases [10] occur in numerous sys-
tems, where the role of the internal degree of freedom
is ascribed to subbands, such as in wide quantum wells
[11–14], layers, such as in double quantum wells [15, 16],
or the valley quantum number, such as in AlAs quan-
tum well [17] and graphene [18–20]. In particular, there
has been much e↵ort towards engineering various system
parameters, such as tunneling, to realize di↵erent FQH
states. However, these approaches can add unwanted side
e↵ects, and therefore, it is desirable to investigate other
control methods.

At the same time, there has been many theoretical [21–
24] and experimental [25–28] studies of the interaction of
light with quantum Hall states of graphene. In particu-
lar, due the linear dispersion in graphene, the Landau
levels (LL) are not equidistant, unlike semiconductors
with a parabolic dispersion [29]. This makes it possi-
ble to selectively couple LLs with resonant light. More
recently, FQH phases in integrated GaAs quantum well-
cavity structures have also been explored experimentally
[30].

In this Letter, we explore the possibility of using light
to control multicomponent FQH phases of graphene.
Resonant excitation by light results in an e↵ective tun-
neling between two LL, with a rate proportional to the
amplitude of the electric field. The optical driving results
in the formation of dressed states of LL orbits. Conse-

FIG. 1: (a) A single layer of of graphene driven by a light
with Rabi frequency coupling ⌦. (b) LL structure with partial
filling and optical transitions between 0� 1 and 1� 2 states.
(c) Formation of the dressed states due to the light coupling
between two LLs.

quently, the Coulomb interaction terms between di↵er-
ent LLs, which are usually ignored due to the negligible
population of the higher LLs, become important. These
terms come in two categories: (1) direct terms, which
are the counterpart of inter-layer interaction in bilayer
systems [31–33], and (2) cross terms, which are absent
in conventional bilayer systems. The latter terms further
turn out to be crucial in understanding how our system
deviates from the usual bilayer systems. We numerically
study the case of ⌫ = 2/3 filling on a torus and find
that, when the e↵ective tunneling rate is large, the sys-
tem forms a Laughlin state out of the dressed LL orbitals.
This is the case for all values of tunneling we considered
for LL0�LL1 transitions. In contrast, for the LL1�LL2

transition with a small e↵ective tunneling rate, the cross
terms in the Coulomb interaction compete with the en-
ergy separation of the dressed states and force the system
into a many-body singlet state. This state is the result
of the cross Coulomb interaction terms, and therefore,
has infinitesimal overlap with the usual bilayer singlet
[31, 34, 35].
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Total Hamiltonian:

Pseudopotential expansion:

Coulomb interaction in synthetic bilayer

We consider two LLs, so (n1, n2, n3, n4) can be represented by pseudo-spin 1/2.

• Haldane pseudo-potential: Any interaction in the presence of 
rotation symmetry can be simplified in terms of relative momenta 28 S.M. Girvin
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Figure 1.10: The Haldane pseudopotential Vm vs. relative angular momentum m
for two particles interacting via the Coulomb interaction. Units are e2/ϵℓ, where
ϵ is the dielectric constant of the host semiconductor and the finite thickness of
the quantum well has been neglected.

The Haldane pseudopotentials for the repulsive Coulomb potential are shown
in fig. (1.10). These discrete energy eigenstates represent bound states of the
repulsive potential. If there were no magnetic field present, a repulsive potential
would of course have only a continuous spectrum with no discrete bound states.
However in the presence of the magnetic field, there are effectively bound states
because the kinetic energy has been quenched. Ordinarily two particles that
have a lot of potential energy because of their repulsive interaction can fly apart
converting that potential energy into kinetic energy. Here however (neglecting
Landau level mixing) the particles all have fixed kinetic energy. Hence particles
that are repelling each other are stuck and can not escape from each other.
One can view this semi-classically as the two particles orbiting each other under
the influence of E⃗ × B⃗ drift with the Lorentz force preventing them from flying
apart. In the presence of an attractive potential the eigenvalues change sign, but
of course the eigenfunctions remain exactly the same (since they are unique)!

The fact that a repulsive potential has a discrete spectrum for a pair of
particles is (as we will shortly see) the central feature of the physics under-
lying the existence of an excitation gap in the fractional quantum Hall effect.
One might hope that since we have found analyticity to uniquely determine
the two-body eigenstates, we might be able to determine many-particle eigen-
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n1+n2,n3+n4 , so only the following Haldane pseudopotentials will be present: intra-level pseudopotentials V "

m

⌘ V "",""
m

and V #
m

= V ##,##
m

, as well as inter-level pseudopotentials V k
m

⌘ V "#,#"
m

= V #","#
m

and V ⇥
m

⌘ V "#,"#
m

= V #",#"
m

. In terms
of these pseudopotentials, the interaction Hamiltonian reads:

V̂ =
X

M

"
X

m odd

�
V "
m

|mM, ""i hmM, ""|+ V #
m

|mM, ##i hmM, ##|
�
+

X

m

V k
m

(|mM, "#i hmM, "#|+ |mM, #"i hmM, #"|) +
X

m

V ⇥
m

(|mM, "#i hmM, #"|+ |mM, #"i hmM, "#|)
#
. (S13)

There are two main di↵erences to conventional bilayer (or spin) systems: First, there are two di↵erent intra-level
pseudopotentials. This breaks Z2 symmetry present in systems of equivalent layers. Second, the inter-level interactions

do not only consist of density-density-interactions, V k
m

, but also contain exchange interactions, V ⇥
m

, usually not present
in bilayer or spin systems. Regarding the first di↵erence we note that, as seen in Fig. 2(a) in the main text, the di↵erent
intra-level pseudopotentials di↵er strongly only at m = 0. Since only odd values of m contribute to the fermionic
system, we expect only a weak e↵ect of this Z2 symmetry breaking.
In order to capture the role of the exchange interactions, we introduce a spin basis in terms of singlet and triplet

configurations:

|+i = 1p
2
(|"#i+ |#"i) ,

|�i = 1p
2
(|"#i � |#"i) .

Re-writing Eq. (S13) in this basis, we get

V̂ =
X

M

"
X

m odd

V "
m

�
|mM, ""i hmM, ""|+ V #

m

|mM, ##i hmM, ##|
�
+

X

m odd

h
V k
m

+ V ⇥
m

i
|mM,+i hmM,+|+

X

m even

h
V k
m

� V ⇥
m

i
|mM,�i hmM,�|

#
. (S14)

We see that symmetry demands to the wave function allow to give up the distinction between V
k
m

and V ⇥
m

if we define
the inter-level interaction as

V inter
m

=

(
V

k
m

+ V ⇥
m

if m is odd,

V
k
m

� V ⇥
m

if m is even.
(S15)

This allows to directly compare the inter-level interactions in Eq. (S13) with models characterized by a single inter-
layer interaction (i.e. models relevant for bilayer or spin systems). As seen in Fig. 2(b), V inter

1 rather than V inter
0

becomes the dominant contribution, when the first and the second graphene LL are coupled. As we have shown by
explicit numerics in the main text, this will result in the formation of singlet ground states, or even of quantum Hall
phases which are derived from a hollow-core model (i.e. V inter

m

/ �
m,1 and V intra

m

/ �
m,1), like the Haldane-Rezayi

phase.

FORMS OF THE TRIAL WAVE FUNCTIONS

In this section we briefly review the form of the trial wave functions considered in this work for both ⌫ = 1/2
and ⌫ = 2/3 fillings. The simplest two component wave functions belong to Halperin (m,m,n) family [15] and have
Abelian excitations:

 (m,m,n) ({zi}, {wi

}) =
Y

i<j

(z
i

� z
j

)m
Y

i<j

(w
i

� w
j

)m
Y

i,j

(z
i

� w
j

)n , (S16)

where z
i

and w
i

are complex coordinates of the electrons for two components, i = 1 . . . N

2 and Gaussian factor

exp
h
�
P

i

⇣
|z

i

|2 + |w
i

|2
⌘
/4l2

i
is implicitly assumed in all formulas in this section. For filling 1/2 the candidate
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0

becomes the dominant contribution, when the first and the second graphene LL are coupled. As we have shown by
explicit numerics in the main text, this will result in the formation of singlet ground states, or even of quantum Hall
phases which are derived from a hollow-core model (i.e. V inter

m

/ �
m,1 and V intra

m

/ �
m,1), like the Haldane-Rezayi

phase.

FORMS OF THE TRIAL WAVE FUNCTIONS

In this section we briefly review the form of the trial wave functions considered in this work for both ⌫ = 1/2
and ⌫ = 2/3 fillings. The simplest two component wave functions belong to Halperin (m,m,n) family [15] and have
Abelian excitations:
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where z
i

and w
i

are complex coordinates of the electrons for two components, i = 1 . . . N

2 and Gaussian factor
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h
�
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⇣
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i

|2 + |w
i

|2
⌘
/4l2

i
is implicitly assumed in all formulas in this section. For filling 1/2 the candidate

inter-layer: direct
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n1+n2,n3+n4 , so only the following Haldane pseudopotentials will be present: intra-level pseudopotentials V "
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. In terms
of these pseudopotentials, the interaction Hamiltonian reads:
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+
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There are two main di↵erences to conventional bilayer (or spin) systems: First, there are two di↵erent intra-level
pseudopotentials. This breaks Z2 symmetry present in systems of equivalent layers. Second, the inter-level interactions

do not only consist of density-density-interactions, V k
m

, but also contain exchange interactions, V ⇥
m

, usually not present
in bilayer or spin systems. Regarding the first di↵erence we note that, as seen in Fig. 2(a) in the main text, the di↵erent
intra-level pseudopotentials di↵er strongly only at m = 0. Since only odd values of m contribute to the fermionic
system, we expect only a weak e↵ect of this Z2 symmetry breaking.
In order to capture the role of the exchange interactions, we introduce a spin basis in terms of singlet and triplet

configurations:

|+i = 1p
2
(|"#i+ |#"i) ,

|�i = 1p
2
(|"#i � |#"i) .

Re-writing Eq. (S13) in this basis, we get
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We see that symmetry demands to the wave function allow to give up the distinction between V
k
m

and V ⇥
m

if we define
the inter-level interaction as

V inter
m

=

(
V

k
m

+ V ⇥
m

if m is odd,

V
k
m

� V ⇥
m

if m is even.
(S15)

This allows to directly compare the inter-level interactions in Eq. (S13) with models characterized by a single inter-
layer interaction (i.e. models relevant for bilayer or spin systems). As seen in Fig. 2(b), V inter

1 rather than V inter
0

becomes the dominant contribution, when the first and the second graphene LL are coupled. As we have shown by
explicit numerics in the main text, this will result in the formation of singlet ground states, or even of quantum Hall
phases which are derived from a hollow-core model (i.e. V inter

m

/ �
m,1 and V intra

m

/ �
m,1), like the Haldane-Rezayi

phase.

FORMS OF THE TRIAL WAVE FUNCTIONS

In this section we briefly review the form of the trial wave functions considered in this work for both ⌫ = 1/2
and ⌫ = 2/3 fillings. The simplest two component wave functions belong to Halperin (m,m,n) family [15] and have
Abelian excitations:
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where z
i

and w
i

are complex coordinates of the electrons for two components, i = 1 . . . N

2 and Gaussian factor

exp
h
�
P

i

⇣
|z

i

|2 + |w
i

|2
⌘
/4l2

i
is implicitly assumed in all formulas in this section. For filling 1/2 the candidate

inter-layer: cross 

(absent in conventional bilayer)

Hollow-core potential?



• Filling factor is

For bilayer: McDonald Haldane PRB (1996)

Recently: Peterson, Barkeshli, Wen, Vaezi, …

Dressed Laughlin

4

Sphere Disk Torus

⌫ = 1/2 0.85 (N = 6) 0.97 0.83 (K = 0)

(HR) 0.75 (N = 8) (N = 6, L = 24) 0.72 (K 6= 0)

0.72 (N = 10) (N = 8)

⌫ = 2/3 0.99 (N = 4) 0.81 (N = 6, L = 18)

(IP) 0.55 (N = 8) 0.63 (N = 8, L = 36)

0.39 (N = 12)

TABLE I. Overlaps of ground states in di↵erent geometries,
for weak LL1�2 coupling (⌦ = 10�3 and � = 0.02), with
HR state (⌫ = 1/2), and with interlayer Pfa�an (IP) state
(⌫ = 2/3). At ⌫ = 2/3, fast decay of the overlap with N
suggests a di↵erent phase, possibly a Fibonacci phase (see
discussion), however we are not aware of unique trial wave
functions to test the overlaps with this phase.

between the layers can transform the (330)-state into a
phase supporting Fibonacci anyons [39]. These anyons
are defined by simple fusion rules, but still allow for
universal quantum computing [42]. Other non-Abelian
phases are obtained via p-type pairing, either between
particles within a layer or between all particles, giving
rise to the intra- and the inter-layer Pfa�an wave func-
tions [40, 41]. Recently, extensive numerical works have
revealed some of these non-Abelian phases if interactions
are properly modified in a bilayer system at ⌫ = 2/3 [45–
47]. In particular, studies on the thin torus [39] as well
as exact numerics [46] point towards a Fibonacci phase if
the short-range contribution to the interlayer interactions
is weakened.

In both coupling scenarios, LL
0�1

and LL
1�2

, ED on
torus and sphere gives clear hints for a hole-conjugate
Laughlin phase when the Rabi frequency is su�ciently
strong. If the Laughlin state is formulated in a dressed
LL basis, overlaps with this state reach close to 1, see
Fig. 3(c,d). As already observed at ⌫ = 1/2, the two
coupling scenarios show di↵erent behavior when ⌦ is de-
creased. Again, while for LL

0�1

tuning the Rabi fre-
quency only rotates the spin, a transition into a singlet
phase occurs for LL

1�2

, see Fig. 3(e,f). In contrast to
⌫ = 1/2, where the transitions occurs between two gap-
less phases, we now observe a transition between gapped
phases, and the gap vanishes only at the critical point,
see Fig. 3(b). Also, at ⌫ = 2/3, the transition does not
a↵ect the symmetry of the ground state (K = (0, 0) on
both sides).

The identification of the singlet phase at weak LL
1�2

coupling is challenging. First let us note that on the
sphere, where our numerics extend up to 12 electrons,
we find large gaps for N = 8 and N = 12, but tiny gaps
for N = 6 and N = 10, suggesting a tetra-periodic be-
havior of the system. While an intralayer Pfa�an state,
requiring mod(N, 4) = 0, would explain this pattern, the
overlap with this state is found to be zero (for N = 8 on
the sphere and the disk). In contrast, significant overlaps
are obtained with the interlayer Pfa�an state (see Table

FIG. 3. (a,b) Energy levels (above ground state in units
of e2/✏lB) vs. Rabi frequency ⌦, for coupling LL0�1 (a),
and LL1�2 (b). (c,d) Ground state overlaps with trial wave
functions (particle-hole conjugate 1/3 Laughlin state and a
singlet phase obtained from hollow-core model). Trial states
are constructed in three di↵erent bases: (1) LL basis. All
the electrons reside in the lower LL. (2) Dressed basis. All
electrons reside in lower eigenstates of Eq. (2), i.e. |ji /�
�
p
�2 + 4⌦2

�
|M+1, ji+2⌦|M, ji. (3) Antisymmetric basis.

All electrons reside in the singlet state, i.e., |ji / �|M +

1, ji + |M, ji. (e,f) Spin polarization S↵ = 1
2N

P
jh
P

j ⌧
(j)
↵ i

of the ground state vs. ⌦ for LL0�1 (e), and LL1�2 (f). Data
in all panels (a–f) was obtained for 8 electrons on the torus,
and � = 0.02.

I). However, the corresponding (3q)-fold torus degener-
acy is not seen for 8 or 10 electrons. Lacking obvious
ground state degeneracies beyond the q-fold center-of-
mass degeneracy, an Abelian phase such as Jain’s spin-
singlet state seems possible [3, 48, 49], but only infites-
imal overlap is found. Given the relative weakness of
V

inter

0

, we shall also consider the Fibonacci phase which
on the torus it is characterized by 2q ground states at
K = (0, 0) [46]. While we obtain the second and the
third state at K = (0, 2) and K = (2, 0) on an isotropic
torus, squeezing the torus changes this pattern, and the
lowest two eigenstates indeed happen to be singlets at
K = (0, 0). Moreover, they have large overlaps with the
corresponding eigenstates of the hollow-core Hamiltonian
(0.76 and 0.81 on an isotropic torus), previously identi-
fied as representatives of the Fibonacci phase [46]. This
makes the Fibonacci phase more likely than other can-
didate phases, although a final conclusion is impossible
based on the available numerical results.
Thermalization. In this work, we have assumed that

the electronic system thermalizes to the ground state in
the rotating frame of the optical drive field. To esti-
mate the validity of this approximation, we have to com-
pare the timescale for relaxation of the optically excited
Landau levels to the timescale for thermalization of the
electronic system with the lattice. The carrier lifetime
of optically excited Landau levels has contributions from

overlap with hollow-core potential 



Outlook:


Thermalization in the driven system: Can phonons cool the 
system in the rotating frame?


Dehghani, Oka, and Mitra, PRB(2014) 
Iadecola and Chamon PRB (2015) 


Seetharam, Bardyn, Lindner, Rudner, and Refael, PRX (2015)


Engineering tunneling, interaction, parent Hamiltonian


Constructing twist defects? 

Barkeshli, Qi PRX (2014)




Outline

• Photons and electronic quantum Hall states 


• Optical probe of IQHE states 
M. Gullans, J. Taylor, A Imamoglu, P. Ghaemi, MH arXiv:1701.03464 (PRB)


• Driven FQH states and bilayer physics  
A. Ghazaryan, T. Grass, M. J. Gullans, P. Ghaemi, MH arXiv:1612.08748 (PRL) 

• Quantum Origami: Applying Transversal Gates and 
Measuring Topological Order (Modular transformation)  
G. Zhu, MH, M. Barkeshli arXiv:1701.03464


http://lanl.arxiv.org/find/cond-mat/1/au:+Gullans_M/0/1/0/all/0/1
http://lanl.arxiv.org/find/cond-mat/1/au:+Taylor_J/0/1/0/all/0/1
http://lanl.arxiv.org/find/cond-mat/1/au:+Imamoglu_A/0/1/0/all/0/1
http://lanl.arxiv.org/find/cond-mat/1/au:+Ghaemi_P/0/1/0/all/0/1
http://groups.jqi.umd.edu/hafezi/publications?f%5Bauthor%5D=366
http://groups.jqi.umd.edu/hafezi/publications?f%5Bauthor%5D=371
http://groups.jqi.umd.edu/hafezi/publications?f%5Bauthor%5D=376
http://lanl.arxiv.org/abs/1612.08748


Topology Topological 
phase of matter

Topological quantum 
error correction code 

    surface   ground-state      

 subspace code space

self-diffeomorphism

protected by the gap active error correction

insensitive to local 
deformation of the 

metric

insensitive to local perturbation

protected logical operation 

Topologically protected operations

Smooth deformations of the geometry that bring the system back to itself

(self-diffeomorphism),  modulo continuously deformable to the identity map.  

Mapping class group (MCG) of     :

punctures (anyons)

      : braid group of n punctures on 

    : representation of the braid group on 

Example of surface diffeomorphism:

Group elements of MCG:  modular transformations



Generators of the MCG on a torus



Representation of the modular transformations

    Representation of the MCG on the ground-state (code) subspace 

topological charge sectors:

Z2 spin liquid (toric code)

• Topological phase: Modular matrices encodes fractional statistics
• Topological code: Augment the capabilities 



Realize modular S with spatial symmetry transformation

Requires long-range tunneling!



Modular RS on a folded system = local SWAP

fold

Local SWAP:   

 1 2

 2
 1

(12)

Transversal SWAP:   

 1  2
 2

(12)

 1



Adding a staircase (one pair of gates) adds genus by 1.

 One staircase = 2 genon

Bombin, Kitaev, Barkeshli, Qi, …

• Non-local boundary conditions 

• T-transformation

• Higher genus 

Genon



Create effective torus with genons



Modular S by folding and SWAP

Protected logical operation with constant-depth circuit

folding

 (12)

 (34)

fold



RT by SWAP and folding

fold

one can generate T with additional moving 
back to square geometry to apply R 

1

2

3

4

1

3

4

2
mirror

folds (gapped boundaries)
(12)(34)(23)(14)

(13)(24)



Modular transformations as transversal logical gates

code 
block

layer 1

layer 2

layer 3

layer 4

merged site

Error propagation bounded by the Lieb-Robinson light cone



Experimental realization

qubit array of superconducting qubits 
embed bi-layer topological phase 
on a single-layer chip

bridge bond

Developed in Martinis’s lab:

Chen et al. APL 104,052602 (2014)

Foxen et al. arXiv:1708.04270 (2017)

fold

folded bi-layer topological phase

Realize topological states with superconducting qubits:

Theory:
E. Kapit, M. Hafezi, and S. H. Simon, PRX 4,031039 (2014)

Experiments:
Owens and Schuster et al.  arXiv:1708.01651 (U Chicago)
Roushan and Martinis et al.  Nature Physics 13, 146–151 
(2017)



Tunneling Hamiltonian:   

phase shift:

Tunneling:

Transversal SWAP operation

parity of the anti-symmetric mode

(useful for measurements)

Also controlled version:  H. Pichler, G. Zhu, A. Seif, P. Zoller, MH, Phys. Rev. X 6, 041033 (2016)

http://groups.jqi.umd.edu/hafezi/publications?f%5Bauthor%5D=326
http://groups.jqi.umd.edu/hafezi/publications?f%5Bauthor%5D=327
http://groups.jqi.umd.edu/hafezi/publications?f%5Bauthor%5D=328
http://groups.jqi.umd.edu/hafezi/publications?f%5Bauthor%5D=331


Experimental realization: topological codes
embedded bi-layers of topological error-correction code on a single-layer

qubit layer 1 qubit layer 2 ancilla 

Z-stabilizer measurement:
layer 1 layer 2 (twist 1    2 ) (twist 2    1 )

Z Z

Z

Z
Z

Z

Z

Z Z
Z

Z

Z
Z

Z

Z

Z

X-stabilizer measurement:
layer 1 layer 2 (twist 1    2 ) (twist 2    1 )

X X

X

X
X X

X

X
X X

X

X
X

X

X

X

1

2

x

x
x

fold

Multi-mode resonators as ancilla

Naik and Schuster et al. (U Chicago)

arXiv:1705.00579



• Photons and electronic quantum Hall states 


• Optical probe of IQHE states 
M. Gullans, J. Taylor, A Imamoglu, P. Ghaemi, MH arXiv:1701.03464 (PRB)


• Driven FQH states and bilayer physics  
A. Ghazaryan, T. Grass, M. J. Gullans, P. Ghaemi, MH arXiv:1612.08748 (PRL) 

• Quantum Origami: Applying Transversal Gates and 
Measuring Topological Order (Modular transformation)  
G. Zhu, MH, M. Barkeshli arXiv:1701.03464


http://lanl.arxiv.org/find/cond-mat/1/au:+Gullans_M/0/1/0/all/0/1
http://lanl.arxiv.org/find/cond-mat/1/au:+Taylor_J/0/1/0/all/0/1
http://lanl.arxiv.org/find/cond-mat/1/au:+Imamoglu_A/0/1/0/all/0/1
http://lanl.arxiv.org/find/cond-mat/1/au:+Ghaemi_P/0/1/0/all/0/1
http://groups.jqi.umd.edu/hafezi/publications?f%5Bauthor%5D=366
http://groups.jqi.umd.edu/hafezi/publications?f%5Bauthor%5D=371
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http://lanl.arxiv.org/abs/1612.08748
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A  zoo of transversal logical gates

Circumvents the no go theorem:
M. E. Beverland, O. Buerschaper, R. Koenig, F. Pastawski, J. Preskill, and S. Sijher, 


Journal of Mathematical Physics 57, 022201 (2016)

QEC realization of non-abelian codes:  Levin-Wen Model / Turaev-Viro code 
Levin and Wen (2005) Koenig, G. Kuperberg, and B. W. Reichardt (2010)

realization:


