Light-induced fractional quantum Hall physics in 2D materials and more

Mohammad Hafezi

Synthetic dimensions in quantum engineered systems ETHZ November 2017

Quantum topological photonics

927

photon pair generation

S. Mittal arXiv:1709.09984

interface with quantum emitter

S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, E. Waks arXiv:1711.00478

<u>Outline</u>

- Photons and electronic quantum Hall states
 - Optical probe of IQHE states
 <u>M. Gullans</u>, J. Taylor, A Imamoglu, P. Ghaemi, MH arXiv:1701.03464 (PRB)
 - Driven FQH states and bilayer physics
 <u>A. Ghazaryan, T. Grass</u>, M. J. Gullans, P. Ghaemi, MH arXiv:1612.08748 (PRL)

 Quantum Origami: Applying Transversal Gates and Measuring Topological Order (Modular transformation) G. Zhu, MH, M. Barkeshli arXiv:1701.03464

Optical probing of quantum Hall states

Optical spectrum of quantum Hall states

Orlita, Potemski, Stromer, Kim

$$H_{\rm int} = (-1)^s \frac{ev}{\sqrt{2}c} [\tau_+ A^*_+(x, y) + \tau_- A^*_-(x, y)] e^{-i\omega t} + h.c$$

 $\tilde{n} = |n| \pm 1 \quad \text{and} \quad m = \tilde{m}$

GaAs works by Pinczuk,....

Recently in cavity: Imamoglu (2016)

Dicke-superradiance: Ciuti, Fazio, MacDonald ..

Spatial probe of quantum Hall states

 $H_{\rm dis} = u_0(\boldsymbol{r})I + \boldsymbol{u}(\boldsymbol{r}) \cdot \boldsymbol{\tau}$

If Fermi level is in between two transitions

Mapping disorder landscape

$$H_{\text{int}} = (-1)^s \frac{ev}{\sqrt{2}c} [\tau_+ A^*_+(x, y) + \tau_- A^*_-(x, y)] e^{-i\omega t} + h.c.$$
$$\tilde{n} = |n| \pm 1 \quad \text{and} \quad m = \tilde{m}$$

M. Gullans et al. PRB (2017)

What if the Fermi level is inside a band?

Most cases: dipole approximation

Multipole emission

Extended states of electrons, e.g. Quantum Hall, Rydberg excitations

Synthetic bilayer Graphene

 2Ω

Use light to couple two LLs:

(1) Different LL plays the role of layers(2) Light plays the role of tunneling

$$H_0(t) = \sum_m \left[\frac{\Delta E}{2} \left(c_{n+1,m}^{\dagger} c_{n+1,m} - c_{n,m}^{\dagger} c_{n,m} \right) + \hbar \Omega \left(c_{n+1,m}^{\dagger} c_{n,m} e^{-i(\Delta E - \delta)t} + \text{h.c.} \right) \right]$$

In rotating frame after rotating wave approximation

$$H_0 = \sum_{m} \left[\frac{\hbar \delta c_{n+1,m}^{\dagger} c_{n+1,m}}{\hbar \Omega c_{n+1,m+\mu}^{\dagger} c_{n,m}} \right] + \text{h.c}$$

A. Ghazaryan, T. Grass, M. J. Gullans,

B. P. Ghaemi, and M. H. arXiv:1612.08748

Coulomb interaction in synthetic bilayer

Total Hamiltonian: $H = H_0 + V^{(RWA)}$

 $V_{m_1,m_2,m_3,m_4}^{n_1,n_2,n_3,n_4(\text{RWA})} = \delta_{n_1+n_2-n_3-n_4} V_{m_1,m_2,m_3,m_4}^{n_1,n_2,n_3,n_4}$

Pseudopotential expansion: $V_{m_1,m_2,m_3,m_4}^{n_1,n_2,n_3,n_4} = \sum_{m,M} V_m^{n_1,n_2,n_3,n_4} \langle m_1, m_2 | m, M \rangle \langle m, M | m_3, m_4 \rangle$

We consider two LLs, so (n_1, n_2, n_3, n_4) can be represented by pseudo-spin 1/2.

 Haldane pseudo-potential: Any interaction in the presence of rotation symmetry can be simplified in terms of relative momenta

Review: Girvin Les Houches (1999)

Haldane pseudo potential for synthetic bilayer

• Filling factor is $\nu=2/3$

	Sphere	Disk	Torus	
$\nu = 1/2$	$0.85 \ (N=6)$	0.97	$0.83 \ (\mathbf{K} = 0)$	
(HR)	$0.75 \ (N=8)$	(N=6, L=24)	$0.72 \ (\mathbf{K} \neq 0)$	 overlap with hollow-core potential
	$0.72 \ (N = 10)$		(N=8)	
$\nu = 2/3$	0.99 $(N = 4)$	$0.81 \ (N = 6, L = 18)$		
(IP)	$0.55 \ (N=8)$	$0.63 \ (N = 8, L = 36)$		
	$0.39 \ (N = 12)$			
				Ear bilovar

For bilayer: McDonald Haldane PRB (1996) Recently: Peterson, Barkeshli, Wen, Vaezi, ... Outlook:

Thermalization in the driven system: Can phonons cool the system in the rotating frame?

Dehghani, Oka, and Mitra, PRB(2014) ladecola and Chamon PRB (2015)

Seetharam, Bardyn, Lindner, Rudner, and Refael, PRX (2015)

Engineering tunneling, interaction, parent Hamiltonian

Constructing twist defects?

Barkeshli, Qi PRX (2014)

<u>Outline</u>

- Photons and electronic quantum Hall states
 - Optical probe of IQHE states
 <u>M. Gullans</u>, J. Taylor, A Imamoglu, P. Ghaemi, MH arXiv:1701.03464 (PRB)
 - Driven FQH states and bilayer physics <u>A. Ghazaryan, T. Grass</u>, M. J. Gullans, P. Ghaemi, MH arXiv:1612.08748 (PRL)

 Quantum Origami: Applying Transversal Gates and Measuring Topological Order (Modular transformation) G. Zhu, MH, M. Barkeshli arXiv:1701.03464

Topologically protected operations

Topology	Topological phase of matter	Topological quantum error correction code				
surface Σ	ground-state subspace \mathcal{H}_{Σ}	code space $\;\mathcal{H}_{\Sigma}\;$				
self-diffeomorphism	protected logical operation					
$h: \Sigma \to \Sigma$	$U(h): \mathcal{H}_{\Sigma} \to \mathcal{H}_{\Sigma}$					
insensitive to local	insensitive to local perturbation					
metric	protected by the gap	active error correction				

Mapping class group (MCG) of Σ :

Smooth deformations of the geometry that bring the system back to itself (self-diffeomorphism), modulo continuously deformable to the identity map.

Example of surface diffeomorphism:

h: braid group of n punctures on Σ

U(h) : representation of the braid group on \mathcal{H}_Σ

Group elements of MCG: modular transformations

Generators of the MCG on a torus

Representation of the modular transformations

Realize modular S with spatial symmetry transformation

Requires long-range tunneling!

Modular RS on a folded system = local SWAP

- Non-local boundary conditions
- T-transformation
- Higher genus

Adding a staircase (one pair of gates) adds genus by 1. One staircase = 2 genon

Bombin, Kitaev, Barkeshli, Qi, ...

Create effective torus with genons

Modular S by folding and SWAP

Protected logical operation with constant-depth circuit

RT by SWAP and folding

one can generate T with additional moving back to square geometry to apply R

Modular transformations as transversal logical gates

Error propagation bounded by the Lieb-Robinson light cone

Experimental realization

bridge bond

Developed in Martinis's lab:

Chen et al. APL 104,052602 (2014)

Foxen et al. arXiv:1708.04270 (2017)

Realize topological states with superconducting qubits:

Theory:

E. Kapit, M. Hafezi, and S. H. Simon, PRX 4,031039 (2014)

Experiments:

Owens and Schuster et al. arXiv:1708.01651 (U Chicago) Roushan and Martinis et al. *Nature Physics* **13**, 146–151 (2017)

Transversal SWAP operation

Tunneling Hamiltonian:
$$H_{\text{tunnel}} = -J \sum_{j \in AB} (a_{j,A}^{\dagger} a_{j,B} + \text{H.c.})$$

Tunneling:
$$\overline{U}^{(1)}(t) = e^{-iH_{\text{tunnel}}t}$$
 $t = \pi/(2J)$

phase shift:
$$\overline{U}^{(2)}(t) = \prod_{j \in AB} e^{it(a_{j,A}^{\dagger}a_{j,A} + a_{j,B}^{\dagger}a_{j,B})}$$

$$\overline{\text{SWAP}} = \overline{U}\left(\frac{\pi}{2J}\right) = \overline{U}^{(1)}\left(\frac{\pi}{2J}\right)\overline{U}^{(2)}\left(\frac{\pi}{2J}\right)$$
$$= \prod_{j \in AB} e^{-i\frac{\pi}{2}(a_{j,A}^{\dagger}a_{j,B} + \text{H.c.})}e^{i\frac{\pi}{2}(a_{j,A}^{\dagger}a_{j,A} + a_{j,B}^{\dagger}a_{j,B})} = \prod_{j \in AB} e^{i\pi a_{j,-}^{\dagger}a_{j,-}}$$
$$a_{j,-} = \frac{1}{\sqrt{2}}(a_{j,A} - a_{j,B})$$
parity of the anti-symmetric mode

(useful for measurements)

Also controlled version: H. Pichler, G. Zhu, A. Seif, P. Zoller, MH, Phys. Rev. X 6, 041033 (2016)

Experimental realization: topological codes

embedded bi-layers of topological error-correction code on a single-layer

- Photons and electronic quantum Hall states
 - Optical probe of IQHE states
 <u>M. Gullans</u>, J. Taylor, A Imamoglu, P. Ghaemi, MH arXiv:1701.03464 (PRB)
 - Driven FQH states and bilayer physics <u>A. Ghazaryan, T. Grass</u>, M. J. Gullans, P. Ghaemi, MH arXiv:1612.08748 (PRL)

 Quantum Origami: Applying Transversal Gates and Measuring Topological Order (Modular transformation) G. Zhu, MH, M. Barkeshli arXiv:1701.03464

- Hwanmun Kim
- Alireza Seif
- Zepei Can
- Wade DeGottardi
- Tobias Grass
- Guanyu Zhu
- Julia Sell
- Jon Vannucci
- Tobias Huber
- Sabyasachi Barik
- Sunil Mittal
- Vikram Orre
- Bin Cao
- Chris Flower

- J. Fan, J. Taylor, A. Migdall, M. Gullans, E. Waks, M. Barkeshli (NIST/JQI)
- S. Ganeshan (Stony Brook)
- A. Vaezi (Stanford)
- A. Imamoglu (ETH)
- A. Ghazaryan, P. Ghaemi (CUNY)

http://jqi.umd.edu/apply

publications: hafezi.umd.edu

A zoo of transversal logical gates

Modele	logical	logical	transversal logical	logical gate	universality
Widdels	basis	string	gate by modular ${\cal S}$	by modular ${\mathcal T}$	of MCG_{Σ}
v = 1/2 FQH	$ a\rangle_{\alpha}$ (qubit)	$W^{lpha} = \overline{X}$	Hadamard	phase	Clifford
$(U(1)_2 \text{ CS})$	a = 0, 1 (semion)	$W^{\beta} = \overline{Z}$	$\overline{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$	$\overline{P} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$	
v = 1/k FQH	$ a\rangle_{\alpha}$ (qudit)	$W^{\alpha} = \overline{X}$	Fourier transform	phase	(generalized) Clifford
$(U(1)_k \operatorname{CS})$	a = 0, 1,k - 1	$W^{\beta} = \overline{Z}$	$S_{aa'} = \frac{1}{\sqrt{k}} e^{i2\pi aa'/k}$	$\mathcal{T}_{aa'} = \delta_{aa'} e^{i2\pi a(a+k)/2}$	
Doubled semion	$ n_s\rangle_{\alpha}$ (qubit)	$W^{lpha}_s=\overline{X}$	Hadamard \overline{H}	phase \overline{P}	Clifford
$(U(1)_2 \times \overline{U(1)_2} \operatorname{CS})$	(semion No.)	$W_s^{\beta} = \overline{Z}$			
Toric code	$ n_e n_m\rangle_{\alpha}$ (2-qubit)	$W^{\alpha}_{e,m} = \overline{X}_{1,2}$	$(\overline{H}_1 \otimes \overline{H}_2)\overline{\mathrm{SWAP}}_{12}$	control-Z	subset of Clifford
$(Z_2 \text{ spin liquid})$	$(n_e, n_m = 0, 1)$	$W^{m eta}_{m,e} = \overline{Z}_{1,2}$		\overline{CZ}	
Ising	$ \mathbb{I}\rangle_{lpha}, \sigma\rangle_{lpha}, \psi\rangle_{lpha}$		$(1 \sqrt{2} 1)$	half a $\pi/8$ -phase	universal
	(qutrit)		$\mathcal{S} = \frac{1}{2} \begin{vmatrix} \sqrt{2} & 0 & -\sqrt{2} \end{vmatrix}$	$\mathcal{T}^2 = \overline{T} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$	(+ measurement
			$\begin{pmatrix} 1 & -\sqrt{2} & 1 \end{pmatrix}$	in Span{ $ \mathbb{I}\rangle_{\alpha}, \sigma\rangle_{\alpha}$ }	or braiding anyons)
Fibonacci	$ \mathbb{I}\rangle_{\alpha}, \tau\rangle_{\alpha}$ (qubit)		$\overline{U}_{xz} = \frac{1}{\sqrt{2+\phi}} \begin{pmatrix} 1 & \phi \\ \phi & -1 \end{pmatrix}$	phase	universal
			$\phi = \frac{1+\sqrt{5}}{2}$	$\overline{U}_z = \begin{pmatrix} 1 & 0 \\ 0 & e^{i4\pi/5} \end{pmatrix}$	

QEC realization of non-abelian codes: Levin-Wen Model / Turaev-Viro code

Levin and Wen (2005)Koenig, G. Kuperberg, and B. W. Reichardt (2010)realization: $Ising \times \overline{Ising}$ $Fib. \times \overline{Fib.}$

Circumvents the no go theorem:

M. E. Beverland, O. Buerschaper, R. Koenig, F. Pastawski, J. Preskill, and S. Sijher, Journal of Mathematical Physics 57, 022201 (2016)