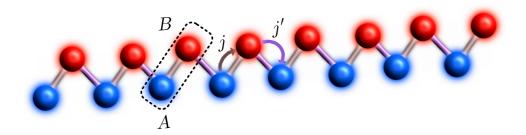
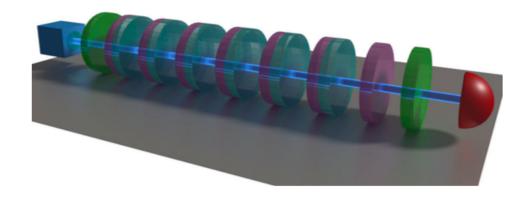
Detection of bulk topological features in real time

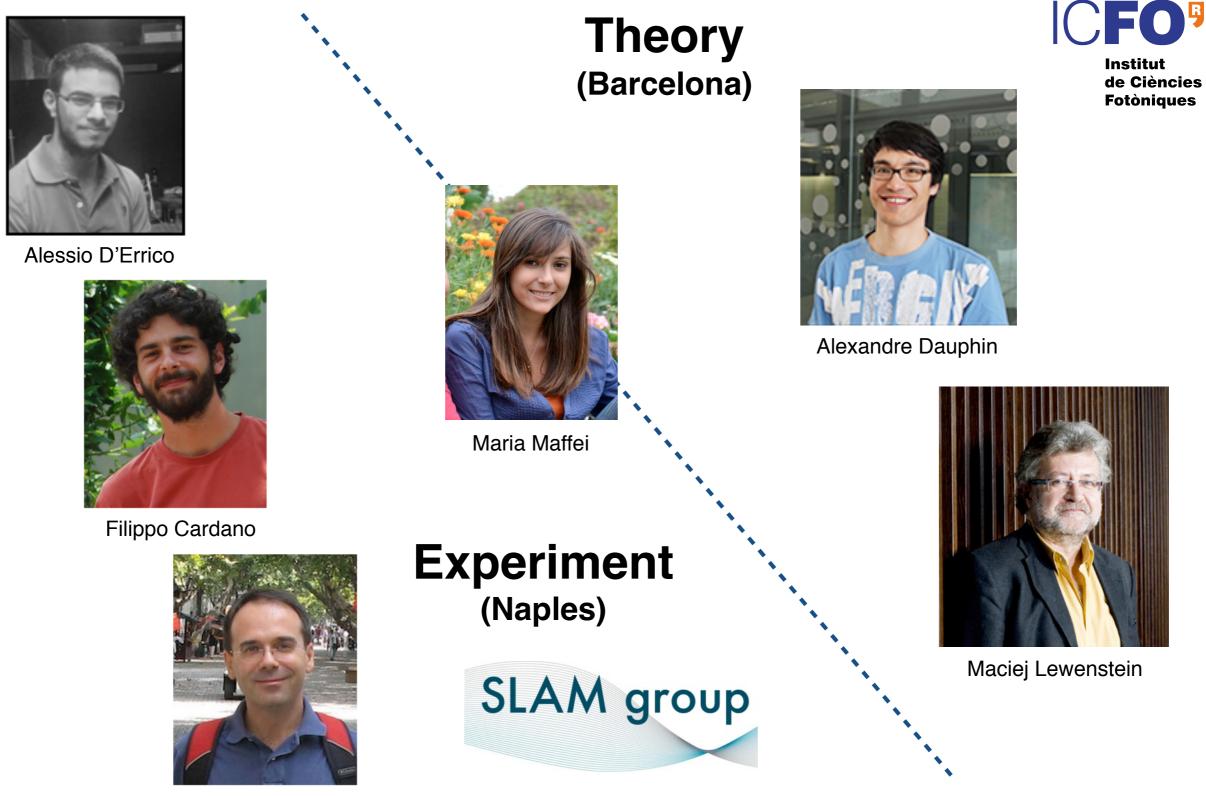
Pietro Massignan





The Institute of Photonic Sciences

Main collaborators

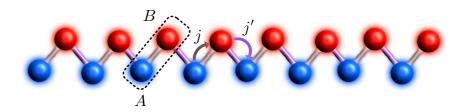


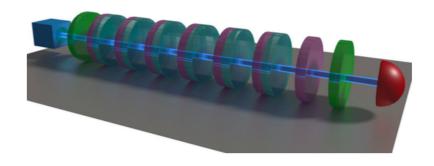
Lorenzo Marrucci

Outline

• Topology in condensed matter systems

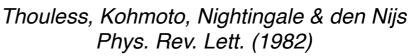
- One-dimensional chiral models
 - static (SSH)
 - periodically-driven
 (photonic quantum walk)

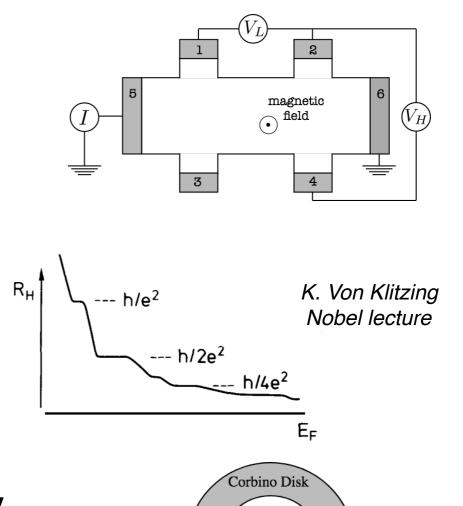




Hall effect

- Classical Hall effect (1879): when current flows in a 2D material, in presence of an out-of-plane B field, there appears a transverse (Hall) current
- Quantum Hall effect (1980): at low temperatures and high-B, the Hall current is quantized!
- Laughlin (1982): robustness due to topology
- TKNN (1982): Kubo formula links conductivity to the Chern number, a topological invariant defined on the occupied bands





flux $\Phi(t)$

Topological insulators

- Insulators in the bulk, but have robust current-carrying edge states
- Protected by the topology of bulk bands against local perturbations, like *disorder* and *defects*
- Enormous progresses in the last 10 years (QSH, 3D TIs., 4D QH, ...)
- Characterization non-interacting TIs in terms of <u>discrete symmetries</u>
 T: time-reversal
 C: charge-conjugation
 S: chiral
 IQHE, Hofstadter, Chern insulators

AI BDI

DIII

AII

CII

С

 Beyond the periodic table: Mott / Anderson / crystalline / Floquet TIs, …

Chiu, Teo, Schnyder & Ryu, Rev. Mod. Phys. (2016)

0

 \mathbb{Z}

 \mathbb{Z}_{2}

 $\mathbb{Z}_2 \\ 0$

 $2\mathbb{Z}$

0

 \mathbb{Z}_2

 $2\mathbb{Z}$

0

0

0

0

 \mathbb{Z}_{2}

 \mathbb{Z}_2 0

 $2\mathbb{Z}$

0

0

0

 \mathbb{Z}

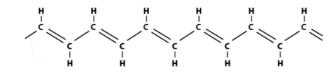
0

0

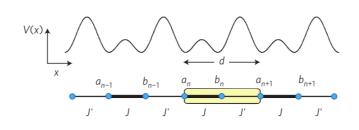
 \mathbb{Z}

 \mathbb{Z}_2

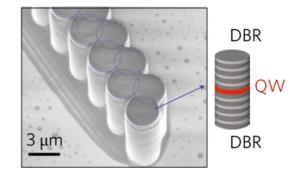
1D chiral systems



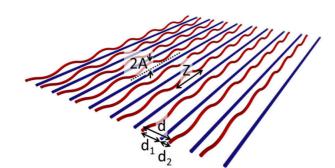
polyacetilene [Nobel prize in Chemistry 2000]



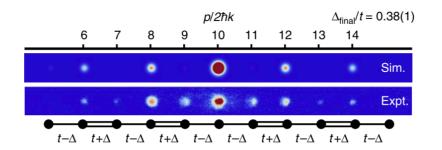
ultracold atoms in superlattices [M. Atala *et al.*, Nat. Phys. 2013]



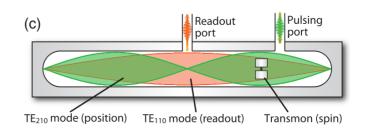
cavity polaritons [St. Jean *et al.*, Nat. Phot. 2017]



Optical waveguides [Zeuner *et al.*, PRL 2015]



ultracold atoms in k-space lattices [Meier *et al.*, Nat. Comm. 2016]



SC qubits in mw-cavities [Flurin *et al.*, PRX 2017]

SSH model

• Spinless fermions with staggered tunnelings:

 $A \xrightarrow{B} \stackrel{j}{\longrightarrow} \stackrel{j}{\rightarrow} \stackrel{j}{\rightarrow} \stackrel{j}{\rightarrow} \stackrel{j}{\rightarrow} \stackrel{j}{\rightarrow} \stackrel{j}{\rightarrow} \stackrel{j}{\rightarrow} \stackrel{j}{\rightarrow} \stackrel{j}{$

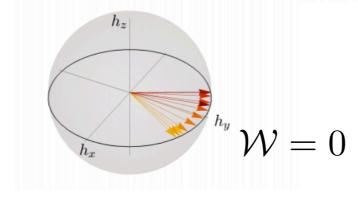
Su, Schrieffer & Heeger Phys. Rev. Lett. (1979)

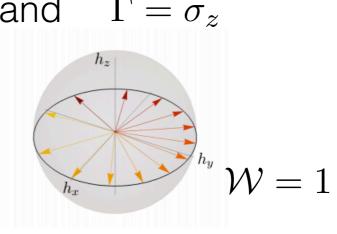
Asbóth, Oroszlány, & Pályi Lecture Notes in Physics (2016)

- ∃ two sublattices
 - \exists a "canonical" basis where *H* is purely off-diag: *H* =

$$= \left(\begin{array}{cc} 0 & h^{\dagger} \\ h & 0 \end{array}\right)$$

- Chiral symmetry: $\Gamma H\Gamma = -H$ (Γ : unitary, Hermitian, local)
- In mom. space the Hamiltonian is 2*2, $H_k = E_k \mathbf{n}_k \cdot \boldsymbol{\sigma}$
- In the canonical basis, $\mathbf{n}_k \perp \hat{\mathbf{z}}$ $\forall k$ and $\Gamma = \sigma_z$
- Winding:





The winding ${\cal W}$

 $\bullet \ensuremath{\mathcal{W}}$ may be calculated:

• from
$$\mathbf{n}$$
: $\mathcal{W} = \oint \frac{\mathrm{d}k}{2\pi} \left(\mathbf{n} \times \partial_k \mathbf{n}\right)_z$

• from the *eigenstates*:
$$\mathcal{W} = \oint \frac{\mathrm{d}k}{\pi} \mathcal{S}, \qquad \qquad \mathcal{S} = i \langle \psi_+ | \partial_k \psi_- \rangle$$

skew polarization

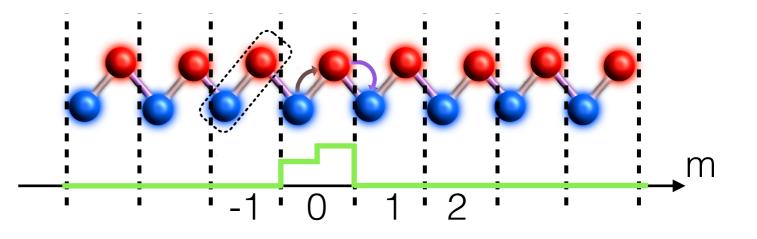
 $H_k = E_k \mathbf{n}_k \cdot \boldsymbol{\sigma}$

What if the Hamiltonian is not known?
 Can one *measure* the winding?

Yes, and it's simple!

Evolution in real time

Initial condition
 localized on the m=0 cell:



• Mean Chiral Displacement:

$$\mathcal{C}(t) \equiv 2 \langle \widehat{\Gamma m}(t) \rangle = 2 \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \left\langle U^{-t} \sigma_z(i\partial_k) U^t \right\rangle_{\psi_0} = 2 \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \sin^2(Et) \left| \mathbf{n} \times \partial_k \mathbf{n} \right| \quad \xrightarrow{t \to \infty} \quad \mathcal{W}$$

 \mathcal{C}

1

0.5

0

• Easy to measure:

$$\mathcal{C}(t) = 2 \Big[\langle m_{\mathbf{A}}(t) \rangle - \langle m_{\mathbf{B}}(t) \rangle \Big]$$

- Fast convergence
- Bulk measurement!

Cardano, D'Errico, Dauphin, Maffei, ... Marrucci, Lewenstein & PM Nature Comm. (2017)

— j'/j=1.5

j'/j=1.0

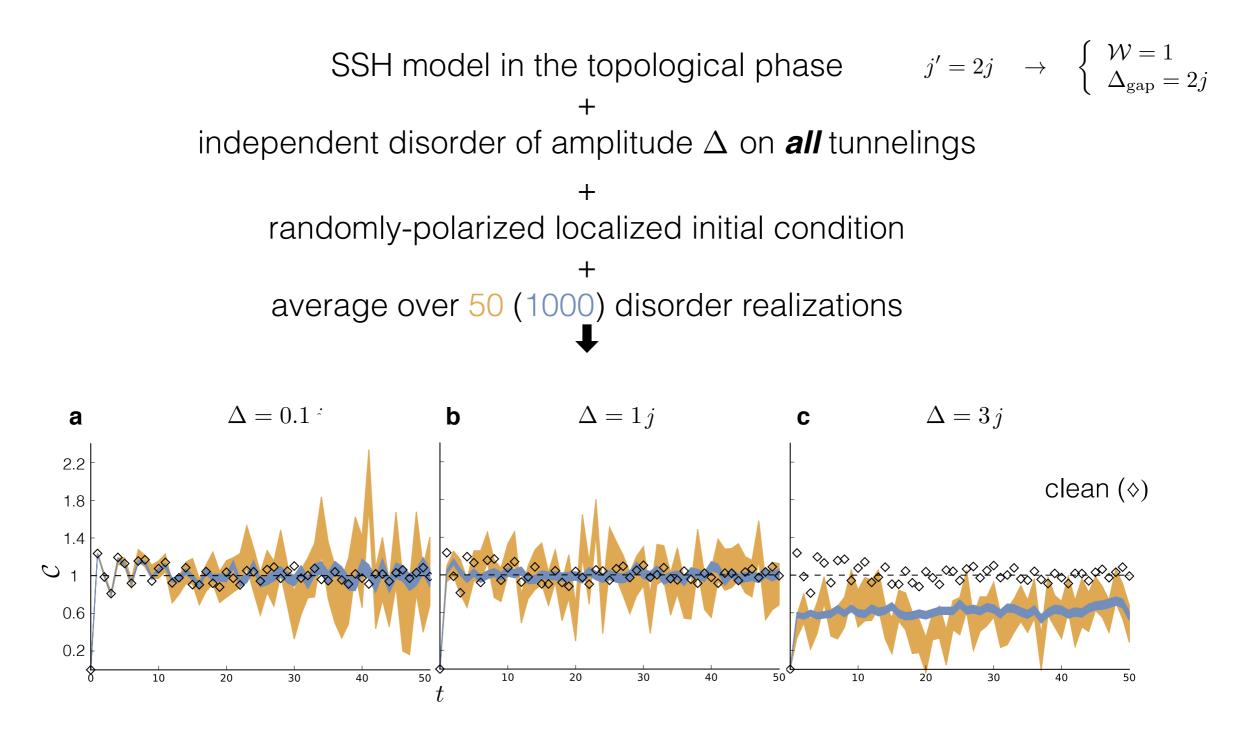
— j'/j=0.5

 $t \lfloor 1/j \rfloor$

30

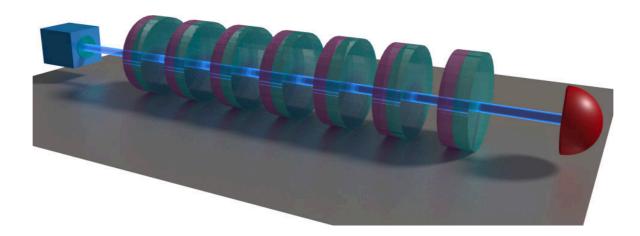
25

Resistance to disorder



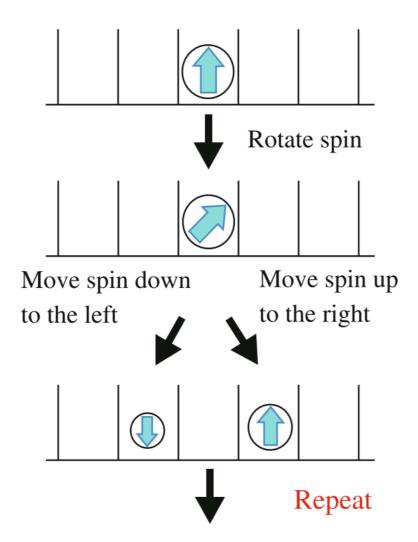
the MCD stays locked to the topological invariant as long as $\Delta{<}\Delta_{\rm gap}$

Floquet 1D chiral models



photonic quantum walk of *twisted* photons

Discrete-Time Quantum Walk

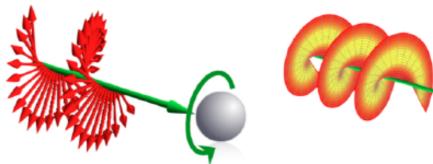


[Kitagawa, QIP (2012)]

Twisted photons

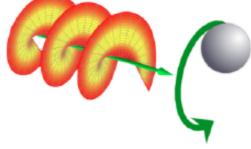
25th anniversary: Allen et al., PRA (1992)

- Collimated monochromatic beam propagating along $\hat{\mathbf{z}}$
- Light has linear momentum $\mathbf{p} \propto \mathbf{E}^* \times \mathbf{B}$ ("push")
- But it can also carry also angular momentum
- In the "paraxial approximation", $\hat{J}_z = \hat{S}_z + \hat{L}_z$
- "Spin" AM: $\hat{S}_z = \hbar \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Orbital AM: $\hat{L}_z = -i\hbar(\mathbf{r} \times \nabla)_z$



SAM interaction

circularly polarized light interacts with the particle's spin

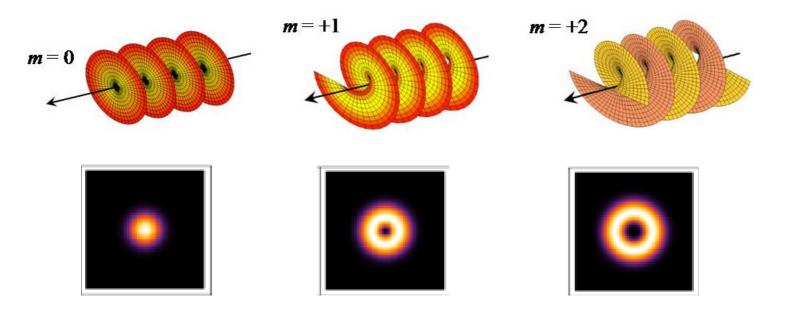


OAM interaction

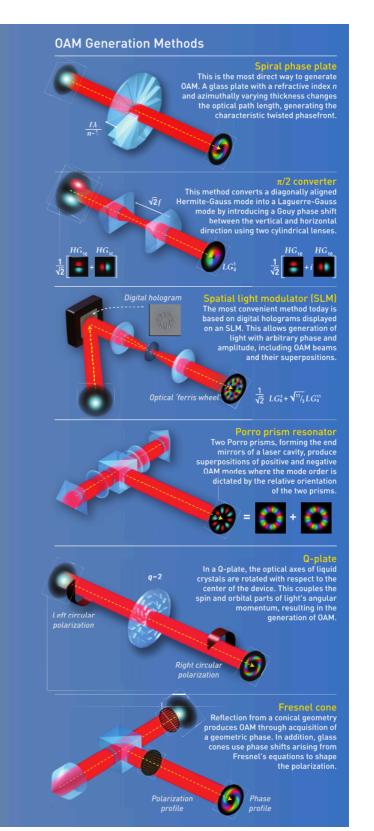
light with OAM rotates a particle around the beam axis

Twisting light

- Helical modes have a phase pattern $e^{im\phi}$
- Their OAM is quantized, $\hbar m$



Franke-Allen & Radwell Optics&Photonics News (2017)

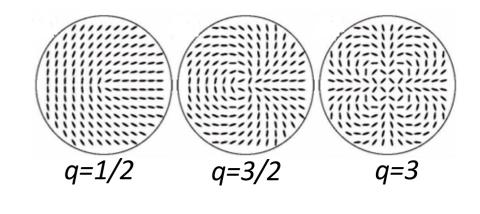


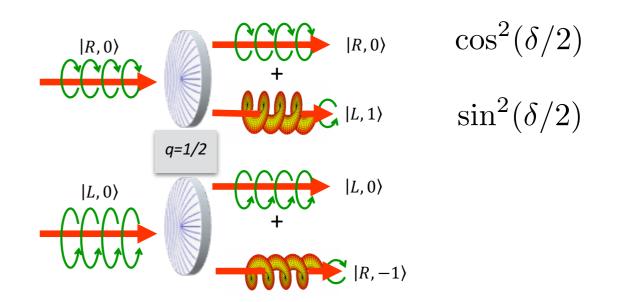
Q-plates

 Liquid crystals deposited on glass plates along singular patterns cause phase retardation of the beam

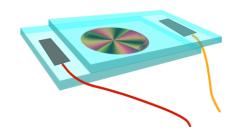
• Q-plates mix OAM and SAM:

("spin-dependent translation")





- An external voltage controls the orientation of the LCs, and therefore the mixing parameter δ



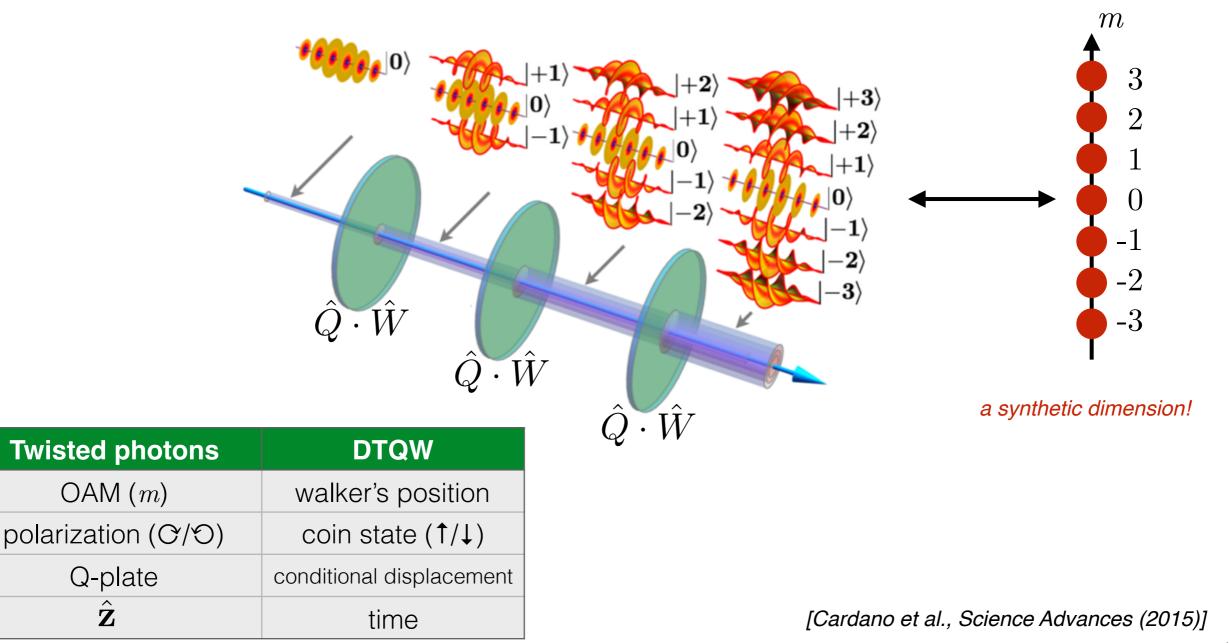
[Marrucci et al., Phys. Rev. Lett.(2006)]

Discrete-Time Quantum Walk with twisted photons

• Cascade of Q-plates and quarter-wave plates W

 $\hat{W} = \frac{1}{2} \left(\begin{array}{cc} 1 & -i \\ -i & 1 \end{array} \right)$

• Initial state: m=0 OAM, and a given polarization



Discrete-Time Quantum Walk

- Periodic evolution: may be treated via Floquet theory
- One-step evolution operator $U \rightarrow H_{\text{eff}} \equiv i(\log U)/T$
- In momentum space, $H_{\rm eff}(k) = E_k \hat{\mathbf{n}}_k \cdot \boldsymbol{\sigma}$
- The spectrum of H_{eff} is 2π -periodic (quasi-energies E_k)
- T+C+S symmetries: BDI class —> same invariant as the static SSH model

Detecting the invariant

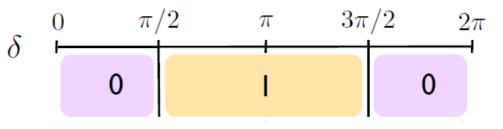
• Winding:
$$\mathcal{W} = \oint \frac{\mathrm{d}k}{2\pi} \left(\mathbf{n} \times \partial_k \mathbf{n}\right)_z$$

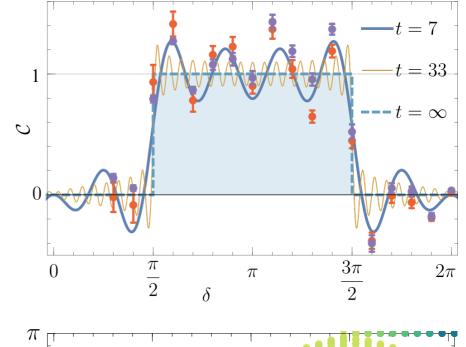
 Experimental measurement of the MCD after 7 timesteps of the DTQW with twisted photons:

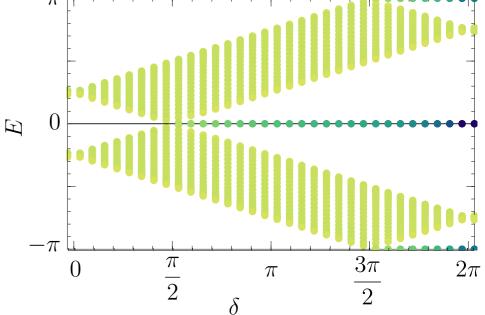
(•/•): different initial polarizations

- Check bulk-boundary correspondence
- Spectrum with edges:

- darker colors: "edgier" states
- Bulk-boundary correspondence violated?

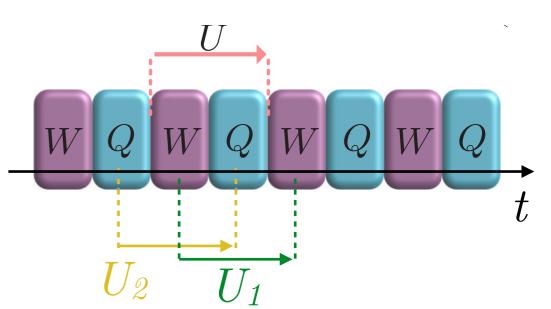




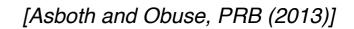


Timeframes

- Different initial t_0 lead to different U
- Eigenvalues of $H_{\rm eff}$ don't depend on t_0
- Eigenstates instead do! And so does the winding
- Timeframes invariant under time-reflection (U_1 and U_2) are special
- # of 0-energy edge states: $C_0 = (W_1 + W_2)/2$
- # of π -energy edge states: $C_{\pi} = (\mathcal{W}_1 \mathcal{W}_2)/2$

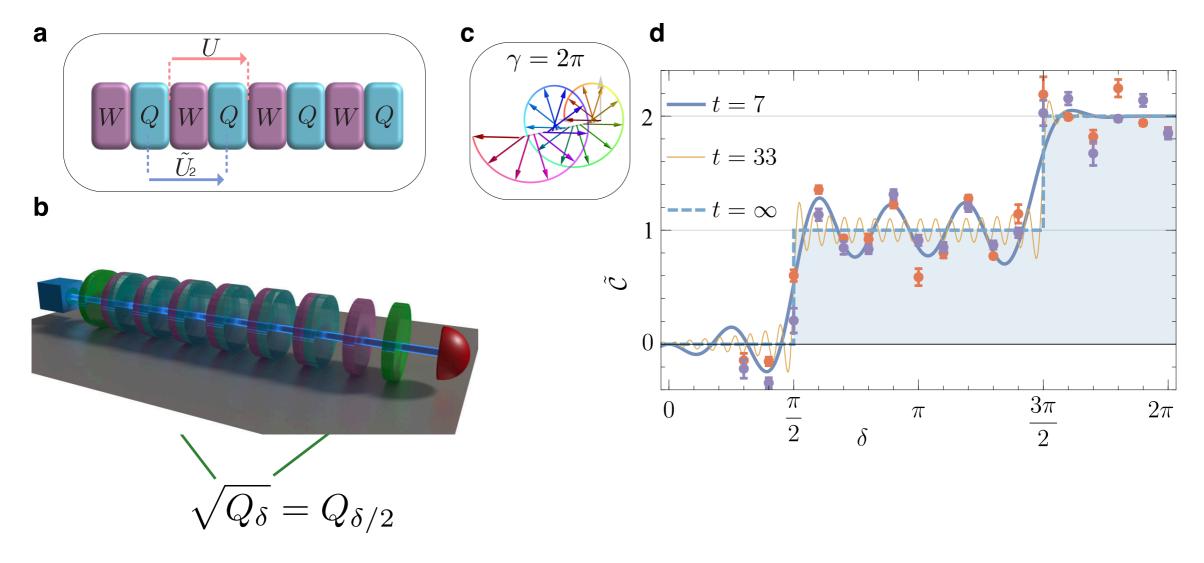


 $\mathcal{W} = \mathcal{W}_1 \neq \mathcal{W}_2$



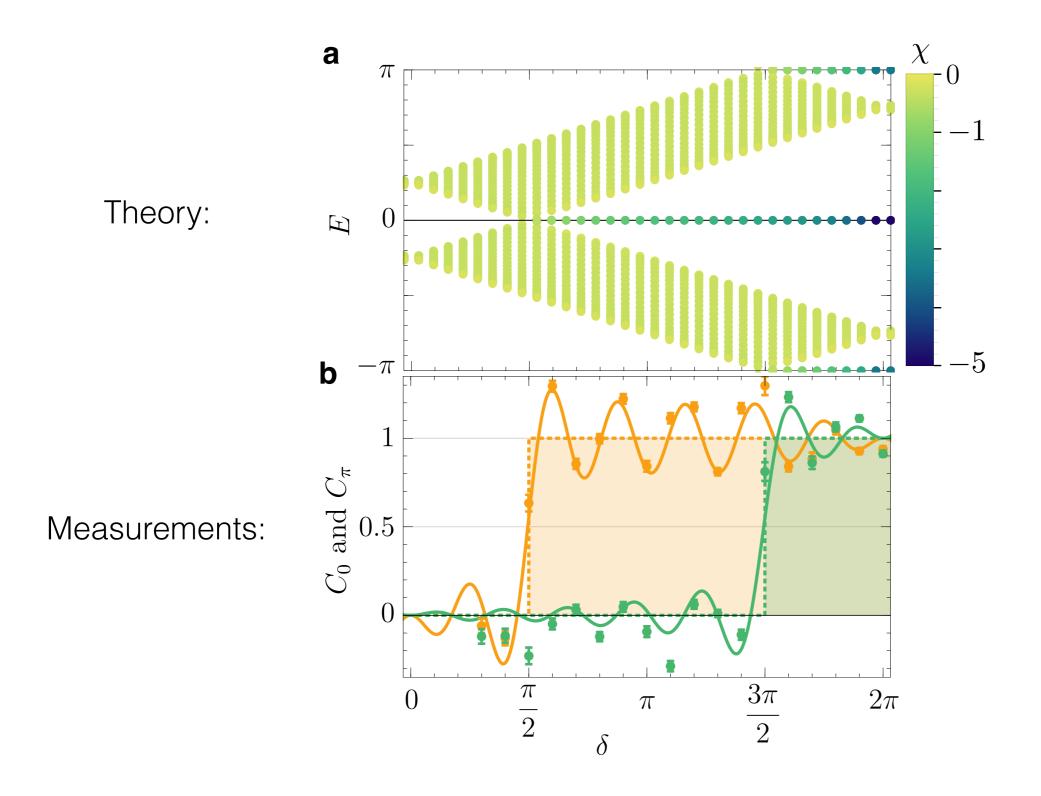
Winding in an alternative timeframe

Measurement of the MCD with protocol U_2 :



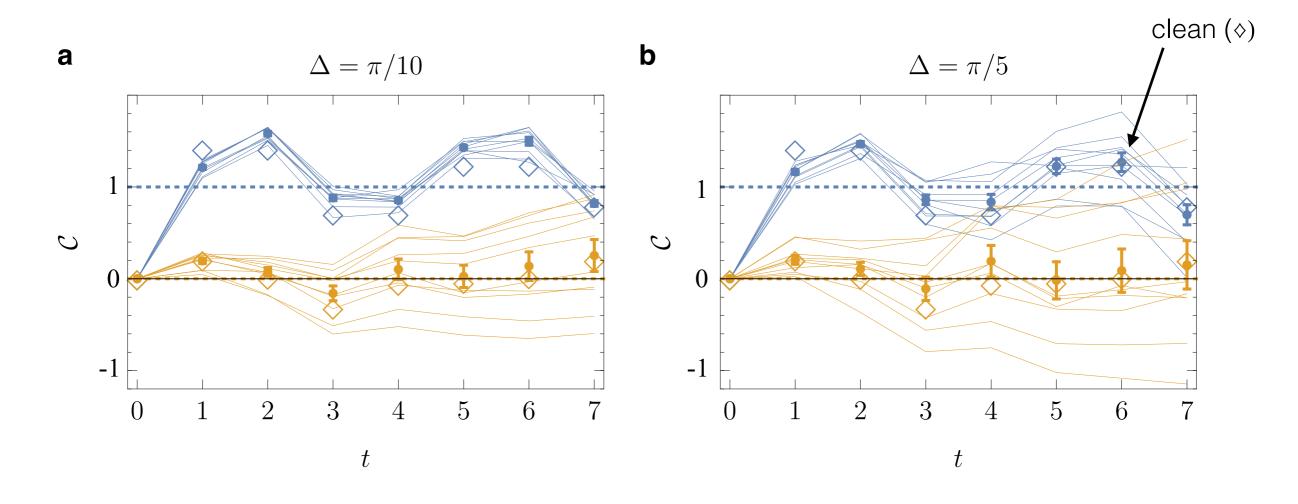
(•/•): different initial polarizations

Bulk-boundary correspondence



Robustness to noise

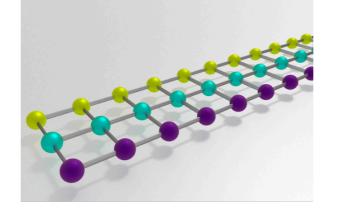
• Adding noise to a trivial/non-trivial configuration:



(•/•): averages over 10 disorder realizations

Recent developments

- $\mathcal{W} = 2$ Extension to multi-band models: lacksquare $\mathrm{Tr}[\widehat{\Gamma m}(t)]$ $\mathcal{W} = 0$ W = -1d/aMaffei, Dauphin, ..., and PM New J. Phys, in press (arXiv 2017) $\mathcal{W} = 1$ -1 0 10 20 5 15 25 30 -1 0 tc/a5 **Topological transitions** ${\color{black}\bullet}$ driven by disorder: [work in progress] 3 Ņ 2 $\nu = 1$ 0, W 2 4 6
- 2D Hofstadter strips (ladders)



Mugel, Dauphin, PM *et al.* SciPost Physics **3**, 012 (2017)

Conclusions

- The *mean chiral displacement* captures the winding of 1D chiral systems (both static and periodically driven)
- Detection of MCD is simple, rapid, and robust to disorder and noise
- Topological characterization of Floquet systems by studying *different timeframes*
- Extending the MCD to other topological classes?
- Interacting systems?

