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Molecular Dynamics

In the first part of this lecture, we introduced methods from statisti-
cal physics to describe the properties of a large number of interacting
units, e.g., particles, spins or other entities. Instead of a statistical
description, we now focus on modeling the microscopic particle inter-
actions by solving the corresponding equations of motion. This tech-
nique is also known as molecular dynamics (henceforth MD). We start
with some straightforward and intuitive methods such as the so-called
Verlet and Leapfrog schemes for solving Newton’s equations of mo-
tion. In what follows, we discuss Lagrange multipliers and long-range
potential methods as tools to simulate composed and long-range in-
teracting particle systems. We conclude this section by introducing
event-driven MD simulations. For further reading, we refer to Ref. [1]
which covers most of the topics treated in this section in a more de-
tailed manner.

Introduction

In this section, we discuss methods to simulate the interactions of par-
ticles. We begin our discussion with the description of classical sys-
tems what implies that we have to solve Newton’s equations of motion.
The mathematical framework of classical mechanics dates back to the
work of Isaac Newton in the 17 century [2]. But only with the rise

of computers in the second half of the 20t

century, it became possible
to perform first MD simulations®. Many of the techniques contained
in this chapter form the basis of modern commercial softwares that
are frequently applied to many engineering and industrial problems.

One of the pioneers of this field is Bernie Alder [3]. He was one
of the first who developed MD methods to computationally study the
interactions of particles.

To model interacting particle systems, we use generalized coordi-

nates
qi = (q},...,qf) and p; = (p},...,pf) (2.1)
in a system where each particle has d degrees of freedom. We then
describe the system consisting of N particles by
Q=(qi,...,qn) and P=(p1,...,PN), (2.2)
and the Hamiltonian
H(P,Q) =K(P)+V(Q) (2:3)

k(P v )
with K (P) = ¥z 422

particle and V(Q) the potential energy. The sum over k € {1,...,d}

being the kinetic energy, m; the mass of the it

" Numerical methods are almost as old
as mathematics itself. Simple calcula-
tions such as linear interpolation and
square root approximations were devel-
oped a few thousands of years ago (e.g.,
the Babylonian clay tablet). More re-
fined methods in differential analysis
started to become of great interest with
the rise of physical sciences in the 17th
century. As an example, Newton’s or
Euler’s method was described by Euler
in 1768 and has been certainly known for
long time. Even Runge-Kutta methods,
that are still used today for very precise
calculations, e.g., in celestial mechanics,
were developed around 1900.

9 ] &z
L 4 '>,/

Figure 2.1: Bernie Alder
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accounts for the d degrees of freedom.

The potential (e.g., an attractive or repulsive electromagnetic poten-
tial) determines the interactions of all particles among each other, and
therefore their dynamics. An expansion of the potential energy yields

V(Q) =) o1 (q)+ Y. ) v (q09) +3) Y, 03 (qiq,qk) +---
i i j>i i j>ik>j>i
(2.4)
The used summation (j > i, k > j > i) avoids to sum over any pair
twice. The first term vy (-) describes interactions of particles with the
environment (e.g., boundary conditions for particle-wall interactions).
The second term v;(-) accounts for pairwise interactions.

Typically three or more body interactions are neglected and their

effect is considered in an effective two body interaction described by

oSt (qi,97) = M (r) + 0P (r) with r=|q;— qj|,

(2.5)

where 02 (7) and v™P (r) represent attractive and repulsive parts of
the potential, respectively. =~ Examples of potentials involving three
particles are the Stillinger-Weber potential [4] and the Axilrod-Teller
potential [5].

For now, we only consider potentials that depend on distance, and
not on particle orientation. Analytically, the simplest potential is the
hard sphere interaction potential

oo ifr<o,
o) = 0 ifr>c (26)

An illustration of the hard sphere potential is shown in Fig. 2.2. This
potential is not well-suited for numerical simulations due to the fact
that the force is infinite at r = . A smoother variant of the potential
should be used in numerical simulations. One possibility is the use of
a potential which describes the spring-like repulsion according to

K(R—71)* ifr<R

P (r) =
0 ifr >R

with R = R; + Ry, (2.7)
where k is the elastic spring constant, and R = R; + R; the sum of the
radii of the individual particles. Such a soft sphere interaction may
lead to unrealistic simulation outcomes (overlapping particles). More
realistic choices are based on combinations of the two mentioned and
additional potentials. Depending on the underlying potential, the dy-
namics will be different, and the computation might be easier or more
cumbersome. For example, it is possible to define a cutoff for certain
short-range potentials what minimizes the computational effort. This
is, however, not applicable to long-range potentials which are therefore
more challenging to simulate.

v (r)

a s

Figure 2.2: An example of a hard sphere
potential.
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2.1.2 Equations of Motion

Another important potential for modeling molecular interactions is the
Lennard-Jones potential

M -4 (9)"- (9)']. 28)

r r

where € is the attractive energy and ¢ the interaction range. Itis a
mathematically simple model that approximates the spherically sym-
metric interaction between a pair of neutral atoms or molecules. The limy oo ™ (r) = 0
first term accounts for Pauli repulsion at short ranges and the sec-

q_.-LJ (?)

ond term describes attractive van der Waals forces. An example of a
Lennard-Jones potential is shown in Fig. 2.3.
Once the interaction potential has been defined, we can easily derive
the equations of motion using the Hamilton equations
k_ OH & oH

4; = a pi = _ﬁ' (2.9) o o/r

where k € {l, c. ,d} and i € {1, vy N} Figure 2.3: An example of a
Lennard-Jones potential, cf. http:

For every particle, we identify q; with the position vector x; and
//www.atomsinmotion.com/.

q; = X; with the velocity vector v;. Due to x; = v; = p;/m; and
pi = —V,;V (Q) = {;, the equations of motion are
mi% = p; = fi = )_fij, (2.10)
i

where f£;; is the force exerted on particle i by particle j. ~Simulating
Hamiltonian dynamics implies that our molecular system may exhibit
certain conservation laws. First, the total energy is conserved if our
considered Hamiltonian # (P, Q) is not explicitly time dependent (i.e.,
if 9;H = 0). Second, if the system is translational invariant in a certain
direction, then the corresponding momentum is conserved. And third,
if the simulated system is rotational invariant about a certain axis,
the corresponding angular momentum component is conserved. For
example, a cubic box with periodic boundary conditions leads to a
conserved total momentum

P= Zpi. (2.11)
i
For a spherical symmetric box, the total angular momentum

L=) xAp; (2.12)
i

about the center of symmetry is conserved.

We now have to solve the last equations of motion defined by Eq. (2.10)
with the help of appropriate numerical integration methods. When nu-
merically computing the motion of particles, it is very important to use


http://www.atomsinmotion.com/
http://www.atomsinmotion.com/
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a sufficiently small time step At. If our chosen time step is too large, we
may encounter unrealistic overlaps and particles may pass through the
interaction range of other particles without interacting with them. We
therefore need a measure that estimates the necessary time step and
the corresponding integration error. Such a measure is the so-called
contact time.

2.1.3 Contact Time

Due to the fact that we consider an interaction force which only de-
pends on distance, we first analyze our particle dynamics in a one-
dimensional setting. The interaction of the particle with the potential

Figure 2.4: Derivation of the contact
time.

| E=V E=K ( )

Tmax Tmin

is illustrated in Fig. 2.4. Using the equations for energy

1
E= Emifz + V (r) = const. (2.13)
and radial velocity
dr [2 2
r
T {m (E-V (7))] , (2.14)

we find for the contact time

N|—

3t max df Tmax | 2 -
2
te = 2/0 dr =2 adr =2 {m (E-V (r))] dr, (2.15)

Tmin Tmin

where rmin and rmax are the range of the potential and the turning
point of a colliding particle, respectively.

The contact time is therefore an estimate for the appropriate time
step of a MD simulation.

We expect reasonable results only if the time step is not larger than
the smallest contact time. The time integration of the equations of
motion is then possible using an integration method such as
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e FEuler’s method,

* Runge-Kutta methods,

e Predictor-corrector methods,
e Verlet methods,

* Leap-frog methods.

In the subsequent sections, we only focus on the last two methods
which have been developed specifically for solving Newton’s equa-
tions.

2.1.4 Verlet Method

This integration method was developed by Loup Verlet to solve New-
ton’s equations of motion [6]. The procedure is simple and related
to forward Euler integration. We begin with a Taylor expansion of
x(t 4 At) for sufficiently small time steps At so that

X (t+ Ab) :x(t)—i—Atv(t)—k%Atzv-f—O (a8,

1 (2.16)
x (= Af) = x () = At () + 5AR V= O (At3) .
Adding the last two expressions yields
X (t+ At) =2x (t) — x (t — At) + AP X (t) + O (At4) . (2.17)

Newton’s second law enables us to express x (t) for the it particle
as

% (1) = %Zf,-j () with £(t) =YV (r ().  (218)
i7

The particle trajectories are then computed by plugging in the last
results in Eq. (2.17). Typically, we use a time step of approximately
At = t:/20.

Some general remarks about the Verlet method:
e Two time steps need to be stored (t and  — At).
* Velocities can be computed with v(t) = W.

e The local numerical error is of order O (At4), ie., it is globally a
third order algorithm.

¢ The numbers which are added are of order O (At°) and O (A#?).

¢ Improvable by systematical inclusion of higher orders (very ineffi-
cient).
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e The method is time reversible, which allows to estimate the error ac-
cumulation by reversing the process and comparing it to the initial
conditions.

2.1.5 Leapfrog Method

For the derivation of the Leapfrog method, we consider velocities at
intermediate steps

v <t + ;At) —v(t)+ %Atv (H+0 (At2) ) -
v <t - ;m) =v(t)— %Atv (t)+0 (At2> . .

Taking the difference of the last two equations leads to

v (t + ;m) =v (t — ;At) + At (t) + O (At3> (2.20)

and we then update the positions according to

x (t+ At) = x () + Atv <t + ;At) +0 (At4) L (221)

The leapfrog method has the same order of accuracy as the Verlet
method. However, both methods differ in the way in which the vari-
ables are integrated.

The analogies and differences between the Leapfrog method

V(E+AL) =v () +Atv (E+ AL, (2.22)
X (4 AF) = x (£) + At v (£ + At)

and the forward Euler integration

v (t+ Ab) fx(®)
m
X (E+ A = x (1) + Aty (1), (223)

v (E+At) = v (£) + AtV (t+ At

7

are the following: Both methods rely on explicit forward integration.
The update of the variables is then done in a different order. In the
case of the Leapfrog method, the position is not updated using the
previous velocity, as it is done in the usual Euler method.

Verlet and Leapfrog schemes are microcanonical, i.e., they are up-
date schemes which conserve energy. Therefore, for sufficiently small
time steps At, energy is usually conserved on average during a simu-
lation and fluctuations are due to round-off errors. Large fluctuations

2-8
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Verlet

t-At t t+At At t At tAt t At t-At

* =
v 4

Leapfrog

t t+At

R | L= | |

|
v | | | | 1~
1 N AN N N 76 N o N D N

in energy are usually a hint for either the time step being too large or
an erroneous code. It is also possible to estimate the accuracy of the
method by analyzing the underlying energy fluctuations.

As in the case of the Verlet integration scheme, this method is com-
pletely time reversible and we can assess the error also by looking at
the change in the initial configuration after having simulated forward
and then backward in time. The difference between the two configu-
rations can be taken as a measure for the error of the method.

Another approach consists in taking two initial configurations that
differ only slightly in the velocity or the position of a particle, and to
observe the difference in the time evolution of the two systems. Ini-
tially, both systems should behave similarly, whereas the difference
increases with time. For instance, let AE be the energy difference be-
tween both systems. The slope of log AE is an indicator of the precision
of the method. The slope is the so-called Lyapunov exponent, and de-
scribes the divergence of the simulated trajectory from the true one.
To circumvent this sensitive dependence on initial conditions, other
integration methods (e.g., splitting methods) are used to simulate the
long-term evolution of such Hamiltonian systems.

Optimization

It is often the case that we are interested in performing MD simulation
for a large number of particles. This makes it necessary to compute
the possible pair interactions for all N particles—an operation of com-
plexity O (N?). However, there exist different ways of optimizing our
MD simulations.

For example, let our potential be a function v(r) o r~2" with n > 1.
As a consequence of

f=—Vr 2" o201y (2.24)

Figure 2.5: A comparison between Verlet
and Leapfrog update schemes.
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it is possible to omit the computation of the square root in

(2.25)

If the potential has a complicated form which makes it computation-
ally expensive to evaluate, we may discretize the potential and storing
its values in a lookup table. For short range potentials, we define a
cutoff r, and divide the interval (0,72) into K pieces with subinterval

lengths
lj= %r?, (2.26)
where j € {1,...,K}. The force values stored in a lookup table are

fi=f (\/E), and the corresponding index j is given by

d
j= {s Y (x - x}‘)zJ +1, (2.27)
k=1

where |-| denotes the floor function and S = K/r2. Interpolation
methods are useful to obtain intermediate values.
The definition of a cutoff makes it necessary that we introduce a
cutoff potential 7(r) according to
(r—re) ifr<r,

o(r) —o(re) — ?T?; r—r, (2.28)

0 ifr>r,

o(r) =

where v(r.) is the value of the original potential at r.. Without adding
the derivative term to the potential 7(r), there would be a discontinuity
in the corresponding force. In the case of the Lennard-Jones potential,
a common cutoff value is r. = 2.5¢. Care must be taken for poten-
tials decaying with r~1, because the forces at large distances are not
negligible.

Verlet Tables

To reduce the amount of necessary computations, we should ig-
nore particle-particle interactions whenever their force contributions
are negligible. Therefore, we only consider particles in a certain range
1 > 7. An illustration of this concept is shown in Fig. 2.6.

For every particle, we store the coordinates of the neighboring par-
ticles in a list which is referred to as Verlet table. As the particles move
over time, the table has to be updated after

vy —7¢

n= Ao (2.29)

time steps with vmax being the maximal velocity. Updating the whole
list is still an operation of complexity O (N2).

Figure 2.6: An illustration of the Verlet
table method. Only particles within a
distance of r; > r. from particle i are
considered.
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2.2.2 Linked-Cell Method

Another possibility of optimizing our MD simulations is the linked-
cell method [7]. In this method, the domain is discretized using a reg-
ular grid with a grid spacing of M satisfying = < M < r. where r. is
the range of the potential (or the cutoff range). Each particle is located
within a certain grid cell. Due to our choice of M, we only have to
consider the particle interactions in certain cell neighborhoods. Parti-
cles located in more distant cells do not contribute to the force term.

In d dimensions there are 37 neighboring cells of interest. On aver-
age, we thus have to compute the interactions of N3iN/N M particles
where N is the number of grid cells. To keep track of the locations
of all particles, we define a vector FIRST of length N to store the in-
dex of a particle located in cell j in FIRST [j]. If cell j is empty, then
FIRST [j] = 0. In a second vector LIST of length N, the indices of the
remaining particles located in the same cell are stored. If the particle i
is the last one in a cell, then LIST [i] = 0.
an example of how to extract the particles located in cell i = 2.

The following code shows

i=2;
M[1]=FIRST[i ];
j=1;

while (LIST[M[ j ]]!=0)

{
M[j +1]=LIST[M[j ]1;
j=j+1;

}

When a particle changes its cell, FIRST and LIST are updated locally
to avoid loops over all particles. The algorithm is thus of order O (N).
In addition, this method is well suited for parallelization (domain-
decomposition).

2.3 Dynamics of Composed Particles

Until now, we just considered single particle interactions with po-
tentials that depend on the distance between particles. In nature, how-
ever, there exist many examples of systems in which the interactions
also depend on size and shape of the considered particles. Examples
include crystals and molecules such as the water molecule shown in
Fig. 2.8. To describe the time evolution of such composed systems,
we have to consider their shapes and constituents. We therefore begin
our treatment of composed particles with the model of rigid bodies
to then slightly relax the condition of rigidity. It is important to bear
in mind that we should only simulate molecular systems at energies

—

Figure 2.7: An illustration of the linked-
cell method. A grid with grid spacing
M (% < M < r.) is placed on top of the
MD simulation geometry. Only interac-
tions between particles in a certain cell
neighborhood have to be considered.

4
QQ%yO ’
H : ) 104.45° ’ ‘ H

Figure 2.8: A water molecule as a com-
posed particle system consisting of two
hydrogen and one oxygen atom.
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that do not affect the stability of the inter-particle bonds. Under the
assumption that the bonds are stable in the simulated energy regime,
there is a wide range of situations in which these methods are very
useful. As an example, distance and angles between the atoms of a
water molecule are constant for temperatures in many practical appli-
cations. In the subsequent sections, we discuss Lagrange multipliers
and rigid body approximations to describe composed particle systems.

Lagrange Multipliers

One possibility to model composed particle systems is to introduce
additional constraint forces as suggested in Ref. [8]. Such constraint
forces are used to establish rigid bonds between individual particles.
The idea is to rewrite the equation of motion for each particle as
miX; = f; + 8i , (2.30)
—~— ~—
external interaction  internal constraints

where the first term accounts for interactions between different com-
posed particles and the second one describes the constraint forces.

We now impose the constraints forces to account for the geometric
structure of the molecules, e.g., certain distances di, and dp3 between
atoms. Therefore, we define a potential such that the constraint forces
gi are proportional to the difference of the actual and the desired dis-
tance of the particles. Considering a water molecule consisting of three
particles, the two distance measures

X12 =11, — dTy, (231)
X23 = 7’%3 - d%y (2.32)

are zero if the particles have the desired distance.
With r;; = [[rj]| and r;; = x; — x; we obtain

A
8k = 5 VxXi2t %kam, (2.33)

for k € {1,2,3}.

The yet undetermined Lagrange multipliers are defined by A, and
Ag3. We compute these multipliers by imposing the constraints. Ac-
cording to Eq. (2.33), the constraint forces are

g1 = Aoriz, 82 = Asrz — Anptip, 83 = —Axsrn. (2.34)
The last equations describe nothing but a linear spring with a yet

to be determined spring constant A(.). To obtain the values of the
Lagrange multipliers A.), the Verlet algorithm is executed in two steps.

2-12
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We first compute the Verlet update without constraint to obtain

£
X; (t+ At) =2x; — x; (£ — At) + Atzﬁl‘. (2.35)

1

Then we correct the value using the constraints according to

xi (F+ A) = %; (t+ At) +At2%. (2.36)

1

By combining Egs. (2.36) and (2.33), the updated positions are given

by
x1 (t+ At) = X (t + At) +At2%rlz (1), (2.37)
1
X (t+ At) = % (t+ At) + At2@r23 (t) — Atzﬁru (1), (238)
np nmy
x3 (t+ At) = %3 (t + At) — At2@r23 (t). (2.39)

ms3

With these expressions, we now obtain A1, and Ap3 by inserting (2.37),
(2.38) and (2.39) into the constraint condition, i.e.,

|x1 (t+ A) — xo (t+ A > = d3,,

xa (£ 4 AF) — x3 (£ 4+ A1) = By, 249
and finally
1 1 A 2
1o (4 At) + APAg, (ml + mz) 11 () — Atzm—zjrm )| =d2,
1 1 A 2
f3 (t 4+ At) + AP Ays <mz + mg) 13 (£) — Atzm—lzzru ()| =da,
(2.41)

where f;; = X; —X;.  The last expressions are then solved for Ay,
and Ap3 to compute the next position x; (t + At). Depending on the
precision needed one might ignore the higher order terms of At.

2.3.2 Rigid Bodies

Systems whose n constituents of mass m; are located at fixed positions
x; are referred to as rigid bodies. The motion of such objects is de-
scribed by translations of the center of mass and rotations around it.
The center of mass is defined as

1 n . n
Xem = M l; x;m; with M= Z m;. (2.42)

i=1

2-13
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The equation of motion of the center of mass and the corresponding
torque are given by

n n
MXcm = Z fi=fym and M= Z d; A f;, (2.43)
i=1 i=1
where d; = X; — Xem. In two dimensions, the rotation axis always

points in the direction of the normal vector of the plane. Therefore,
there exist only three degrees of freedom: two translational and one
rotational. In three dimensions, there are six degrees of freedom: three
translational and three rotational. = We first discuss the treatment of
rigid bodies in two dimensions and then generalize it to the three-
dimensional case.

Two dimensions

In two dimensions, the moment of inertia and the torque are given by

I://Arzp(r)dA and M://Arft (r)dA, (2-44)

where p(r) is the mass density and f; the tangential force. In general,
the mass density may be constant or depending on the actual position
and not only on the radius r. The equation of motion is given by

Iw =M. (2.45)

We now apply the Verlet algorithm to x and the rotation angle ¢ to
compute the corresponding time evolutions according to

¢ (t+At) =2¢ (1) —gb(t—At)+At2MT(t),

X(t+At) =2x(t) —x(t—A) +APM 1Y £ (1),
jeA

(2.46)

where the total torque is the sum over all the torques acting on the
rigid body; i.e.,

M) = Y [ (e () — fr (0l (1)]. (247)

jEA

Three dimensions

To describe the motion of rigid bodies in three dimensions, we con-
sider a lab-fixed and a body-fixed coordinate system x and y, respec-
tively. The transformation between both systems is given by

x = R(t)y, (2.48)

Figure 2.9: An example of a rigid body
in two dimensions. The black dot show
the center of mass (CM), and f;(r) repre-
sents the tangential force component.
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where R(t) € SO(3) denotes a rotation matrix?.
Furthermore, we define Q = RTR and find with RTR = 1 that

RTR+R"TR=0+0T =0. (2.49)
The last equation implies that () is skew-symmetric and thus of the
form
0 —ws3 wy
Q=] ws 0 —-w and Qy=wAy, (2.50)
—wn w1 0

where w = (wy, wy, w3).
The angular momentum is then given by

n n
L= Z mix; \ X; = Z m;Ry; N\ Ry;. (2.51)
i=1 i=1
Combing Egs. (2.51) and (2.50) yields
n n
L=R) myAN(wAy) =RY) mifw(yi-yi)—yi(w-y)]. (252)
i=1 i=1

The components of the inertia tensor are defined as
n .
I =) m [(Yi “¥i) Ojk — Y?Yﬂ (2.53)
i=1
and thus 5
L=RS with §;= kZ:l Ligewy. (2-54)

where [ is the inertia tensor.
Considering a coordinate system whose axes are parallel to the prin-
cipal axes of inertia of the body, the inertia tensor takes the form

L 0 0
I=10 L 0 and §; = [jw;. (2.55)
0 0 I

With Eq. (2.54), the equations of motion are determined by
L=RS+RS$=M, (2.56)
where M = RM represents the torque in the lab-fixed coordinate sys-
tem. By multiplying the last equation with RT, we find the Euler equa-
tions in the principal axes coordinate system, i.e.,

M I —1
601=1+(211 3)602(03,

M Iz — 1
Wy = ==+ ( 3 1) w3wi, (2.57)

2The group SO(3) is the so-called three
dimensional rotation group, or special
orthogonal group. All rotation matrices
R € SO(3) fulfill RTR = RRT = 1.



COMPUTATIONAL STATISTICAL PHYSICS 2-16

The angular velocities are then integrated according to

t L1
wi (F4+At) = wy () + AtM}i() + At (213) whws,
1 1

I—1I
wy (F4At) = w; (1) +AtM§7(t) + At (311) wiwi,  (2.58)
2 2
ws (t+At) = ws () + AtMii(t) + At (111_12) w1ws.
3 1

From these expressions, we obtain the angular velocity in the labo-
ratory frame
w (t+ At) = Rw (t + At). (2.59)

Since the particles are moving all the time, the rotation matrix is not
constant. We therefore have to find an efficient way to determine and
update R at every step in our simulation. In the following, we therefore
discuss Euler angles and quaternions.

Euler Angles

One possible parameterization of the rotation matrix R is denoted

by

R =R(¢,9,9)
cos¢ —sing 0 1 0 0 cosyp —sinyp 0
= |sing <cos¢ O 0 cosf —sinf sinp cosyp 0
0 0 1 0 sin® cosf 0 0 1

(2.60)

An illustration of the Euler angle parameterization is presented in
Fig. 2.10. As a consequence of the occurrence of products of multiple
trigonometric functions for arbitrary rotations, this parameterization
is not well-suited for efficient computations. We have to keep in mind
that this operation has to be performed for every particle and every
time step, leading to high computational effort. For the computation
of angular velocities, derivatives of Eq. (2.60) have to be considered.
Specifically, we would have to compute

b — sin ¢ cos & cos ¢ cos 0 &

¢ =" sin 6 Y sin@ i

0 = @y cosf + @, sin¢, (2.61)
i . sing _ cos¢

¢_wxsin9 “Vsing”

X3
Vs
Y,
0
p\y X,
% \ 2
\
YK

Figure 2.10: Euler angle parameteriza-
tion of a rotation matrix.
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Quaternions

Denis J. Evans, a professor in Canberra, Australia, came up with a trick
to optimize the computation of rotational velocities [9, 10].

Quaternions are a generalization of complex numbers, where four
basis vectors span a four-dimensional space. We define

o= cos (5 ) cos (214), (262)
qlzsh1<g)cos(¢;;¢), (2.63)
g2 = sin (g) sin (W) , (2.64)
g3 = cos (g) sin (4’?”) ’ (2.65)

with0 < g; <land);q; =1fori € {1,...,4}, to represent the angles
in dependence of a set of quaternion parameters q;. The euclidean
norm of q equals unity and thus there exist only three independent

parameters.
The rotation matrix as defined in Eq. (2.60) has a quaternion repre-
sentation
G+ —a—a 2(ma+q09s)  2(0193 — q002)
R=| 2(mg2—qo93) G-+ —a5  2(4293+qom)
2(q95+q092)  2(7293 + q091) %—ﬁ—%+%(6®
2.

We now found a more efficient way of computing rotations without
the necessity of computing lengthy products of sine and cosine func-
tions. This approach is much faster than the one of Eq. (2.60). The
angular velocities are then computed according to

qo go —q1 —q92 —43 0

; 1 B

71 = a1 4o q3 92 Wx (2.67)
42 12 43 qgo  —q1 Wy

43 3 —92 q 9o w;

Since quaternion and euclidean representations are connected by
a diffeomorphism, there is always the possibility of calculating the
values of the Euler angles if needed

2 (q091 + 9295) |

¢ = arctan | ———————< (2.68)
| 1-2(qi+43)

6 = arcsin [2 (qog2 — 9193)] (2.69)
2 (q093 + 12) |

P = arctan | ——————>5< (2.70)
| 1-2(53 +43) |

Figure 2.11: Rotating spheres in a sphere
assembly as an example of rigid body
dynamics [11].
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There is no need of calculating the Euler angles at each integration
step. We now simulate our rigid body dynamics in quaternion repre-
sentation according to the following strategy:

 Compute the torque in the body frame M = R™M,
* Obtain w (f 4+ At) according to Eq. (2.58),

e Update the rotation matrix as defined in Eq. (2.66) by computing
q(t + At) according to Eq. (2.67).

An example of a composed particle system whose dynamics has
been simulated using a quaternion approach is shown in Fig. 2.11.

2.4 Long-range Potentials

2.4.1

In Sec. 2.2, we discussed different optimization techniques to speed up
our MD simulations. If the potential decays sufficiently fast, it is pos-
sible to define a cutoff to neglect the vanishing force contributions at
large distances. However, if the potential of a system in d dimensions

decays as V(r) oc 74

or even slower, it is not possible to define a cutoff
anymore. The reason is that there is a non-negligible energy contri-
bution even at large distances. Examples of such potentials occur in
electrostatic, gravitational, and dipole interactions. To simulate such

systems, we discuss the following methods:
e Ewald summation,
e Particle-Mesh methods (PM, PPPM & APPPM),

e Reaction field method.

Ewald Summation

Paul Ewald3 developed a method to compute long-range interactions
in periodic systems. It has been originally developed to study ionic
crystals. Our goal is to now apply this method to MD simulations.

Until now, we used periodic boundary conditions for systems of
finite size. This was only possible, because the interaction correlations
were decaying with increasing distance.

In the case of long-range potentials, the particles are no longer un-
correlated since they are able to interact even at large distances. What
we can do is to periodically repeat our system by attaching its own
image at its borders. This is illustrated in Fig. 2.12. We consider those
repeated systems as really existing, and compute the interaction of the

2-18

3Paul Ewald was professor at the Uni-
versity of Stuttgart, Germany, also ac-
tive during the period before the sec-
ond world war. He was elected rec-
tor in 1932. However, due to increasing
difficulties with the Dozentenbund (the
professors’ association), which was affil-
iated to the National Socialist party in
Germany, he had to resign his position
in the spring of 1933. He continued his
activities, until Wilhelm Stortz, the new
rector, asked Ewald to leave the univer-
sity. For further reading, see Ref. [12]
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particles in our field of interest with all the other particles in the sys-
tem. Every cell is characterized by a vector that goes from the origin
of the central system of interest to the origin of the outer cell.

The resulting potential is thus the sum over particle interactions that
repeat over several boxes, i.e.,

V= lzlz,zizwr--—l—nrl (2.71)
2 -~ ] 1y 7
n o jj

where z; and z; represent the corresponding charges or masses. For
the sake of brevity, we are omitting 47tey or 47 G factors. The sum over
n denotes the summation over all lattice points

n = (ncL,nyL,n;L)

with integers 7y, 1y, n; and sublattice size L. The prime indicates that
we are excluding n = 0 for i = j.

The first sum comprises the central box at n = 0 and the following
terms are the ones for which |[n| =L, i.e, n = (£L,0,0),n = (0,£L,0)
and n = (0,0, £L). The Ewald sum is only conditionally convergent,
i.e., the convergence depends on the order of the summation and the
convergence is very slow. Since Ewald never used a computer, he
intended to sum over an infinite number of cells. What one has to do
in reality is to truncate the sum at some point and try to estimate the
error.

Because of the nature of the algorithm, it is only used for systems
consisting of a few particles. Several approaches are possible to im-

Figure 2.12: An example of a Ewald
summation procedure. From left to
right, the system is periodically attached
at the boundaries.
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p(r) p(r)
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1}
v
+

Ewald sum Real space sum

prove the convergence [13, 14]. One possible technique consists of
screening the charges by a Gaussian distribution
ZZ'K?’

pi(r) = exp (—Kzl’z) (2.72)

3
T2

with some arbitrary screening factor x.

After having introduced the screening charges one has to cancel
their total effect using charges of opposite sign. The basic idea behind
this summation is shown in Fig. 2.13. This way, the result is a sum in
real and reciprocal space which converges faster

1 ‘erfc (K’rij+n|)

V=1L T

i Lm |rij + n|

1 472 —k?
S k;@ ZiZj g &P (4,{2) cos (krij)] (273)

2

K 271
_ ﬁ lezlz + 3? ;ziri
with the error function erfc (x) = % [ exp (—t2) dt. The last term is
necessary if the boxes are surrounded by vacuum. These formulas
are mentioned here only to show that the Ewald sum is a conceptu-
ally straightforward idea with many implementation difficulties. It is
only applicable under certain circumstances and we therefore focus on
other approaches in the next sections.

Particle-Mesh Method

Another possibility of simulating long-range particle interactions is the
so-called Particle-Mesh (PM) method. This method was invented by
Eastwood and Hockney, and is not very well suited for inhomogeneous
distributions of particles [15, 16]. It is based on the following steps

e Put a fine mesh on top of the system.

Reciprocal space sum

Figure 2.13: The Ewald sum consists of a
sum in real and another one in recipro-
cal space. The charges are screened with
Gaussian charge distribution. Other dis-
tributions are also possible.



COMPUTATIONAL STATISTICAL PHYSICS

¢ Distribute the charges onto the mesh points.

¢ Calculate electrostatic potential by solving the Poisson equation on
the mesh using FFT.

¢ Calculate force on each particle by numerically differentiating the
potential and interpolating back from the mesh to the particle posi-
tion.

The mesh concept is similar to the one shown in Fig. 2.7. Once the
potential is known, we compute the force exerted on the particles by
interpolating the potential at the vertices.

The accuracy of the results depends on the following criteria:

e Errors should vanish for large distances between the particles.
* Momentum should always be conserved (from F;; = —Fy;).

¢ Charges or masses on the mesh and the interpolated forces should
vary smoothly.

This method is not very efficient and time consuming for
¢ Inhomogeneous distributions of charges or masses.
® Strong correlations, like bound states in molecules.

e Deviation from the point-like object approximation (e.g., tidal ef-
fects).

* Complex geometries of the system.

In these cases one might consider using the Particle-Particle-Particle-
Mesh (P3M) or the Adaptive Particle-Particle-Particle-Mesh (AP3M) al-
gorithms. These methods are presented later in the subsequent sec-
tions. The PM method is well-suited for gravitational interactions, be-
cause such systems are characterized by overall low mass densities,
i.e.,, smooth variations in the potential, which are relatively homoge-
neously distributed.

Implementation

Once we discretized our d dimensional system, there exists more than
one possibility to assign charge and force values to vertices:

* Nearest grid point: Put particle on nearest grid point and also eval-
uate its force at the nearest grid point.

e Cloud in cell: Assign the charge to the 27 nearest grid points and
also interpolate from these 2¢ grid points.

2-21



COMPUTATIONAL STATISTICAL PHYSICS

In two dimensions, a possible cloud in cell implementation of a
charge g located at (x,y) is given by the charge distribution

pij = 227(9%1 = x)(Yiv1 — V),
Pit1j = ﬁ(x —x)(Yir1—Y),
Pij+1 = zg%(xzﬁrl = x)(y — i),
Pi+1j+1 = ﬁ(x —x;)(y — i),
where Al is the grid spacing.  The potential at a certain point r is

given by the convolution of p (r) with the Green’s function, i.e.,

¢(r) = ./p (r) G (r,x') dr’. (2.74)

In the case of an electrostatic or a gravitational interaction, the Green'’s
function is given by G (r,r') o |r — /| .

In Fourier space this corresponds to a multiplication with G (k) o
k2 ie, ¢ (k) = p (k)G (k) (convolution theorem). After applying

the inverse Fourier transform, the forces are then given by

F(r;) = —V¢ (). (2.75)

The FFT determines the computational complexity O (Nlog N) of the
method. More information about further properties are contained in
Ref. [17].

Knowing the field at every point, we compute the force at every
vertex of the mesh and then interpolate the forces on the corners of
the mesh to find the force that is exerted by the field on a particle. As
already mentioned, the PM algorithm is not very well suited for in-
homogeneous distributions of particles, strong correlations like bound
states or complex geometries. In these cases, the P°M and AP*M meth-
ods, tree codes or multiple expansions constitute other possible simu-
lation techniques. One important example is the very heterogeneous
distribution of stars and galaxies in astrophysics. For further reading,
we recommend Ref. [18].

P3M (Particle-Particle-Particle-Mesh)

For particles with close neighbors, we decompose the force acting on
it into two terms, i.e.,
F=F;+F, (2.76)

where the first term accounts for short-range interactions and second
term describes interactions over large distances. The short-range
interactions are simulated by solving Newton’s equation of motion

2-22
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whereas the PM method is applied to the long-range forces. This ap-
proach has the drawback that the long-range potential field has to be
computed for each particle and we still have not solved the problem
of heterogeneity. Most of the grid points are empty making this algo-
rithm not very efficient.

AP3M (Adaptive Particle-Particle-Particle-Mesh)

A possibility to improve the particle mesh simulations is to adapt the
mesh to the particles density, i.e., using an adaptive mesh with higher
resolution where the particle density is higher. One implementation
could be to refine a cell as long as there are more particles than a
certain accepted quantity. Tree codes are then used to organize the
structures emerging in the continuous refinement process [18]. The
advances in the simulation of many-body systems often depend on the
development of such bookkeeping techniques. As an example, present
simulation frameworks allow to simulate the interaction of up to 10
particles [19].

2.4.3 Reaction Field Method

In the case of more complex interactions such as composed molecules
or non-point-like particles, a good solution is to ignore the complexity
of distant particles and only take into account their mean effect while
calculating explicitly the interaction with close particles. The concept
finds its root in the work of Onsager on the dielectric constant but it
was introduced as an explicit computational technique in the 1970s
[20, 21, 22].

This method is mostly used for the simulation of dipole-dipole in-
teractions. We consider a sphere N; of radius r.. The dipole moments
#; within the sphere lead to an electric field (reaction field)

2(es —1)

E; = .
1 2€s+1 rc ]Z "l]/ (277)

with e, being an effective parameter to model the dielectric continuum
outside the sphere. The resulting total force exerted on particle i is

F, = Z Fij +u; NE;. (2.78)
JEN;

As the particles are moving, the number of particles inside the cavity
is not constant. This causes force discontinuities because of instanta-
neous force changes. To avoid this effect, it is possible to introduce a
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distance depending weighting factor

1, for ri <1
Te—7V;

g(rj) = rzfri' forre <r; <rc (2.79)
0, forr, < rj

2.5 Canonical Ensemble

After discussing various techniques to simulate the interaction of par-
ticles and rigid bodies, we now again focus on their statistical descrip-
tion. Often we are not interested in the properties of single particles,
but rather in macroscopic quantities such as temperature, pressure,
and density. Until now, we have not introduced any method to control
such macroscopic properties in our molecular dynamics simulations.
In this section, some important methods are presented. Particular
attention is paid to the Nosé-Hoover thermostat and the Parrinello-
Rahman barostat. For further readings, Ref. [1] is recommended.

Experiments are often conducted at constant temperature and not
at constant energy. This is a common situation, because systems are
usually able to exchange energy with their environment. We therefore
first couple our system to a heat bath to realize this situation. There
are various options to do this

® Rescaling of velocities,

¢ Introducing constraints (Hoover),
e Nosé-Hoover thermostat,

e Stochastic method (Anderson).

However, before focusing on the discussion of the last methods,
we shall define the concept of temperature used in the subsequent
sections. We start from the equipartition theorem

oH oH

for a Hamiltonian H with the generalized coordinates p and q.
We consider a classical system whose Hamiltonian is given by

N p2
H = L 4+ Vi(xy,...,x 2.81
l; 2, (x1 N) (2.81)
and we define the instantaneous temperature
2 N p?
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Velocity Rescaling

We now discuss a straightforward yet physically wrong method to
simulate a canonical ensemble of particles. The equipartition theorem
as defined by Eq. (2.80) tells us that the kinetic energy of the particles
corresponds to a certain temperature. Intuitively, we should be able
to adjust the instantaneous temperature of the system by rescaling the
velocities of the particles according to

V; = av;. (2.83)

The measured temperature is proportional to the squared velocities
and thus

T — a®T. (2.84)
Therefore, we have to set
T
a=1/= .8
7 (2.85)

to stay at a certain desired temperature T.

This method is very easy to implement. However, the problem is
that the resulting velocity distribution deviates from the canonical one.
A modification of this method makes use of an additional parameter
77 which describes the coupling to heat bath. The scaling factor is then
(Berendsen thermostat)

At (T
oc:\/1+TT(7_1>. (2.86)

Still, we do not recover the canonical velocity distribution (Maxwell-

Boltzmann). Velocity rescaling should be only applied to initialize a
MD simulation at a given temperature.

Constraint Method

Another possibility to adjust the temperature of the system is to add a
friction term to the equations of motion, i.e.,

pi =fi —Cpi, (2.87)

where p; = m;X;. Various definitions of the friction coefficient ¢ are
possible. Hoover’s original proposal is based on the following constant
temperature condition:

. d N ) N
To— (Y. p7) x) pipi=0. (2.88)
dt \/5 i=1
By combining Egs. (2.87) and (2.88), we find
N
N ¢
g = Lot (289)

N Ipil®
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This method makes it necessary to already start at the desired tem-
perature. Another possibility is to determine the friction coefficient
according to (Berendsen)

T
E=v (1 - 7-> , (2.90)
or (Hoover)
=12 -1, (20)

The parameters v and Q determine the temperature adaption rate,
and f is the number of degrees of freedom.  Still, all these have
the drawback that they either do not recover the Maxwell-Boltzmann
velocity distribution, or that they assume an artificial relaxation time
scale defined by Q. In addition, these methods are not time reversible.

2.5.3 Nosé-Hoover Thermostat

In order to overcome the problem of the wrong velocity distribution,
we are now going to discuss the Nosé-Hoover thermostat as the correct
method to simulate heat bath particle dynamics. Shuichi Nosé intro-
duced a new degree of freedom s that describes the heath bath [23, 24].
The corresponding potential and kinetic energy are

V(s) = (3N + 1) kgTlIns,
1 (2.92)

~Q4%.

I<(s):2

The new degree of freedom s rescales the time step dt and momenta
p; according to
dt’ =sdt and p!=sp;. (2.93)
The velocities are also rescaled:

,_dXi_dXig_Vi

At R N B 2.
ViTar T dtar s (2.94)
The Hamiltonian is thus
N P/2 1 9
— i 2 Ne
H—izzlzmis2+2Qs +Vi(xy,...,xn) +V(s), (2.95)
with ps = Qs being the inertia term and ps; the momentum corre-
sponding to s. The velocities are
dxi o g PP
dt’ Pi m;s? (2.96)
ds oM ps K

@_aPS_Q
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With p! = m;s?%; we find

dp! oH - .
f, = dit)’l = o = —VyV(x1,...,XN) = 2m;ssx; + mis?%;  (2.97)

and
12

—(BN+1)kgT| . (2.98)

dps JdH 1 pi
dt/ s s Z

= mis?
Based on the last Hamilton equations, we find for the equations of
motion in virtual time ¢’

mis?%; = f; — 2m;ésx; with i€ {1,...,N} (2.99)

and
N 1
Qs =Y mysx; — g (3N + 1) kpT. (2.100)
i=1
Note that Egs. (2.99) and (2.100) are coupled. This reflects the fact that
the two systems are not isolated and exchange energy in form of heat.
In order to obtain the equations of motion in real time, we have to
remind ourselves that dt = dt'/s and p} = sp;. Thus, we find for the
velocities

dx; dx;  p; Pi

—_ = §— ,
dt dt’  mys  m;

ds ds p (2.101)
—g— —gks
a Car -t
and for the forces
dp; d /p! dp! 1ds , 1ds
—s— [ 2] = — —f 205,
ar ~ Car ( s ar ~sarPi TN T 5P
d d (2.102)
PS _ pS pl
& = Sap Z — (BN +1)kgT.
With ¢ = 486 — S representing a friction term, the equations of
motions (2.99) and (2.100) are given in real time by
X; = Ell — &% (2.103)
and
1 . 1Y 501
EQ(: =3 Z mix; — 5 (3N +1)kpT. (2.104)

i=1

The first term in Eq. (2.104) denotes the measured kinetic energy
whereas the second one corresponds to the desired kinetic energy. The
quantity Q represents the coupling to the heat bath. The higher its
value, the stronger the system reacts to temperature fluctuations. For
Q — oo, we recover microcanonical MD, and for small values of Q we
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0 50 100 150 200

find spurious temperature oscillations. Such oscillations are shown in
Fig. 2.14.
A reasonable value of Q is characterized by the fact that normal
temperature fluctuations are observed, i.e.,
2

AT = mT, (2.105)

where d is the system’s dimension and N the number of particles.
We now show that the Nosé-Hoover thermostat recovers the canonical
partition function. Therefore, we start from microcanonical MD and
the corresponding partition function

Z = /(5 (H — E)dsdps d3x’ d3p/, (2.106)

where the x and p integration has to be taken over a three dimensional
space with N particles. With # = #; 4+ (3N + 1) kgT In (s) and in real
time, we find

7= /5 [(H1 — E) + 3N + 1) ksTn (s)] sNds dps d®x d°p
(2.107)

0 _(37\7]{]1_)15 T 53N+1 dsd d3 /d3 /
— _ + -
/ [S ¢ ’ } BN+ 1) kpT P x @ry

where we used the identity 6 [f (s)] =6 (s —so) /f' (s) with f (sp) =0
in the second step. Integrating Eq. (2.107) over s yields

Z:/me desdxdp

713{7%"d3 d3 1 kT d
= B B — B
/e g p/(3N+1)kBTe Pss

2
with Hy = Ho + f—é The first term of the last equation is the canoni-

(2.108)

cal partition function and the last term a constant prefactor. In 1985,

Figure 2.14: Temperature fluctuations of
the Nosé-Hoover thermostat for 64 par-
ticles and different values of the thermal
inertia Q.
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Hoover proved that the Nosé-Hoover thermostat is the only method
with a single friction parameter that gives the correct canonical distri-
bution. Hoover also showed that this thermostat satisfies the Liouville
equation, i.e., that the density of states is conserved in the phase space.

2.5.4 Stochastic Method

Another method has been proposed by Andersen [25]. The so-called
stochastic method is a combination of molecular dynamics and a Monte
Carlo algorithm.

At temperature T, the velocities are distributed according to the
Maxwell-Boltzmann distribution

1 P
P = ———¢ kT, (2.109)

(ks )’}
Every n time steps, a particle is then selected uniformly at random and
given a new momentum according to Eq. (2.109). If 1 is too small one
has pure Monte Carlo and looses the real time scale, e.g., the long time
tail of the velocity correlation. If # is too large the coupling to the heat
bath is too weak, equilibration is slow and one will essentially work
microcanonically.

2.5.5 Constant Pressure

Another important situation is the one of constant pressure. We again
consider the equipartition theorem and a Hamiltonian as defined by
Egs. (2.80) and (2.81). We find

1/N
3 <in [V V (x)]> = NkpT. (2.110)
i=1

We now distinguish between particle-particle and particle-wall inter-
actions P2t and X, respectively. This leads to

1/¥ 1/J art ext
3 <l§xi~[vxiV(x)]> =3 <in- (ff’ +f; >>

i=1

1 N art 1 N
=73 in'f? - = Exi-fieXt .
3 i=1 3 i=1

(2.111)

We define
1Y art
w=3 Y x; - fF (2.112)
i=1

as the virial. Based on

1 /Y 1 1
(Y x-£0) = —7/ dA = —= / V.x)dV = —pV, (2.
3 <i_1xl ; > 3 rpx 3P V( x) pV, (2.113)
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we define the instantaneous pressure P by

PV = NkpT + (w) . (2.114)

Similarly to the Nosé-Hoover thermostat, we introduce a parameter
W which adjusts the pressure of the system. The volume change is
given by

At

V:1—(XT—
Tp

(p—"P)

where ar is the isothermal compressibility and 7, is a relaxation time
for the pressure.

(2.115)

The characteristic lengths of the systems change
according to Eq. (2.115) and x — Vix. This rescaling is only valid
in isotropic systems where a change in length is the same in every
directions. In this case, we just rescale the derivatives as in Sec. 2.5.3.
The rescaled Hamiltonian is then given by#

N
1 1
H =) 5mi; + 5 WV2+V (xi,...,xy) +pV (2.116)
i=1

2

where the new variable V is a volume change controlled by a piston of
mass W, that also defines the canonical momentum

py = WV. (2.117)

We again derive the equations of motion from the Hamiltonian. The
velocities are

dxj _ OH _ _pi
at — ap; vy
Pi  miVs (2.118)
v _9H _pv
dr opy W
and the corresponding forces
dpi . oH o LN _ ¢
&~y T (Vin) =6 e
2.119
dpy = oH 1 ¥ 1
= v = av T (Vi) -p
The equations of motion of the Berendsen barostat are then
M (AN
omy 3V
(2.120)

.. 1
WV = VA

i=1

N ) 1 N
m;x; + 3V Z fix; —p.
= -

4The choice of the letters representing
volume and the potential might be con-
fusing since we refer to the volume as V
and to the potential as V' ().

Figure 2.15: A weight of mass W exerts
a pressure p on the system with volume
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2.5.6 Parrinello-Rahman Barostat

In the case of the Berendsen barostat, an isotropic rescaling of space
and an isotropic medium are assumed. However, this is generally
not the case since, for instance, the volume of certain crystals cannot
be rescaled equally in every direction. The first and simplest gener-
alization of the Berendsen barostat is an orthogonal scaling of a box
described by three vectors, a, b and ¢ of volume

V=a-(bAc)=det(H) with H={ab,c}. (2.121)
The position of a particle i in the box is described by
r, = Hs; =x;a+yb+zic with 0<ux,y;,z; <1 (2.122)
The distance between two particles i and j is then given by
1'5 = si]T Gsjj withG = HTH. (2.123)

The Hamiltonian as defined by Eq. (2.116) is transformed to
1 T 1 o
H = 5 Zj:misiTGsi + ZX]: V (rij) + EWTr (H TH) +pV. (2.124)

The corresponding equations of motion are

m;8§; = Hilfl' — miG’l (Gsl) ,
. AT (2.125)
Wi = pv (H)

The Parrinello-Rahman barostat is very important when simulating
crystals, e.g., in solid state physics or in material science. Our degree
of freedom is not a simple scalar like in the Hoover thermostat but a
matrix H given by the geometry of the system.

2.6 Event-driven Molecular Dynamics

So far, we only considered integration schemes such as Verlet or Leap
Frog methods as described in Secs. 2.1.4 and 2.1.5 to solve MD prob-
lems. These approaches are, however, not suited to handle hard-core
potentials because of the occurrence of infinite forces. In this case,
event-driven methods are applicable to simulate the elastic particle col-
lisions by considering the collision events and not the complete time
evolution of the systems. In addition, it is also possible to model in-
elastic collisions with event-driven methods. As opposed to “batc”
programming the flow of an event-driven program is not determined
by loops but by events, and therefore has branching points and con-
ditional logic. In the next sections, we discuss different examples of
event-driven dynamics for the modeling of elastic and inelastic colli-
sions.
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2.6.1 Elastic Collisions

As a first example of the application of event-driven methods to MD,
we consider a work of Alder [3]. In this work, Alder studied rigid
bodies of finite volume such as billiard balls. A hard-core potential
is assumed to model the elastic collisions between these particles not
taking into account friction. Our standard MD integration schemes
fail to describe such systems and we therefore now focus on an event-
driven formulation of particle interactions. We therefore regard par-
ticle collisions as instantaneous events and between them particles do
not interact.

In this method only the exchange of the particles” momenta is taken
into account and no forces are calculated. Furthermore, only binary
collisions are considered and interactions between three or more par-
ticles are neglected. Between two collision events, the particles follow
ballistic trajectories. To perform an event-driven MD simulation, we
need to determine the time f. between two collisions to then obtain
the velocities of the two particles after the collision from the veloci-
ties of the particles before the collision using a look-up table. To

Figure 2.16: Two particles collide elasti-
cally.

determine ¢, we have to identify the next collision event. We there-
fore consider the collision of two disks i and j with radii R; and R;,
respectively. We show this collision in Fig. 2.16. The collision angle 6
is the angle between the connecting vector r;; = r; — r; and the rela-
tive velocity v;; = v; —v;. For the moment, we are not taking into
account the influence of friction and thus neglect the exchange of an-
gular momentum. We compute the times ¢;; at which the next collision

between particles i and j occur. At time t;;, the distance between the

ijr
two particles is

|rif (tij)| = |Ri + R]’| . (2.126)
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Given a relative velocity v;; at time fy, the contact time ¢;; can be ob-
tained from

Z)izjf?j +2 [1‘1']‘ (to) Vi]'] tij + [71']' (to)}z — (Rl' + R/‘)z =0. (2.127)

We should bear in mind that the solutions of Eq. (2.127) are only
meaningful if the trajectories of particles i and j cross. The next colli-
sion occurs at time

fo = rr}]m (tij) - (2.128)

Thus, in the time interval [ty, t.], the particles’” positions and angular
orientations evolve according to

ri(to+tc) =1 (fo) +v; (fo)tc and ¢; (fo+tc) = ¢; (o) + w; (to) te.

(2.129)
It is also possible to add gravitational or electrostatic force terms. The
main bottleneck is the computation of the contact times ¢;; since it is of
order O (N?). For each particle i, we have to identify particle j which
first collides with particle i to then compute t;;. After performing this
procedure for all particles, we have to find the minimum according
to Eq. (2.128). For high-density particle systems, it is not necessary
to determine ¢;; for distant particles. Still, the distances between all
particles need to be considered and thus the algorithm may still be
very inefficient. Instead of looking at distances between particles, it
is also possible to divide the system into sectors and treat those sepa-
rately. The crossing of particles through the boundaries of a sector is
then considered as a “collision”. Another possibility to speed-up this
algorithm is given by the Lubachevsky method [26].

Lubachevsky Method

Unfortunately, the loop to calculate ¢, is of order O (N?) when simply
checking all pairs. Checking all particles is , however, not very efficient
because (i) some collisions are scheduled but only occur after O (N)
steps and (ii) some particles are not participating in any collisions but
their positions are always updated. This can be improved by only
considering and updating the particles participating in the collision
event.

Tricks due to Lubachevsky allow to reduce the order to O (N log N) [26].

The improved algorithm is based on lists of events and binary stacks.
Specifically, in addition to the particle position and velocity, we store
the last event and the next event for each particle. In this way, we are
keeping track of the time of the event and the partner particle involved
in the event.

In practice, this can be implemented in six arrays (event times, new
partners, positions and velocities) of dimension N (number of particles

2-33
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in the system). Alternatively, one creates a list of pointers pointing to
a data structure for each particle consisting of six variables.

Storing the last event is needed as particles are only updated after
being involved in an event. For each particle i, the time t() is the
minimal time of all possible collisions involving this particle, i.e.,

) = mjin (tif) - (2.130)
Comparing particle i with N — 1 others can be improved by dividing
the systems in sectors such that only neighboring sectors have to be
considered in this step.

These sector boundaries have to be treated similar to obstacles such
that when particles cross sector boundaries a collision event happens.
For each particle 7, this step would then be of order O (1) instead of
O (N). The next collision occurs at time

te = miin (t(i)) . (2.131)

We store () in increasing order in a stack:

¢ The vector part[m] points to particle i which is at position m in the
stack. (Sometimes also a vector pos|i] is used to store position m of
particle i in the stack.)

¢ This constitutes an implicit ordering of the collision times t(i), where
m = 1 points to the smallest time.

® part[1] is the particle with minimal collision time: t. = ¢(part(1])

e After the event for both particles all 6 entries (event times, new
partners, positions and velocities) have to be updated. Additionally,
the vector part[m] has to be re- ordered.

Re-ordering the times t() after each event is of order O (logN)
when using, e.g., binary trees for sorting. The advantages of this
method are that it is not necessary to minimize all the collision times of
all the pairs at every step, and that it is unnecessary to update the po-
sitions of particles that do not collide. Only the position and velocity
of the particle involved in the collision event are updated.

2.6.3 Collision with Perfect Slip

After having identified the next collision event, we have to update the
particles’ position, velocities and angular orientation. With Eq. (2.129),
we only considered the time evolution until the collision occurs, and
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we therefore now have to consider the particle dynamics after the col-
lision.

In a first approximation, we are assuming perfect slip and neglect
any tangential exchange of momentum. Only linear momentum and
no angular momentum is exchanged. The conservation of momentum

leads to
A
v after —  before | l, (2.132)
m;
v after _ o before ﬂ’ (2.133)

i i )
m;

and energy conservation to

%mi (Vliaefore)2 + %mj (V}oefore)2 — %mi (Viafter)2 + %mj (V;lfter)z
(2.134)

The exchanged momentum is

Ap = — 2o [(V‘?efore _ V})efore) . n} n (2.135)
m,-m]-
mi+m;
the velocity updates are

with meg = being the effective mass and n = r;;/[x;|. If m; = m;,

Viafter _ V‘Zpefore _ UZ- ‘n, (2.136)
after __ _ before n
V| =V, +vj;-m, (2.137)
with v, = vibEfore — vb9f0r9> -n. The values can be stored once in a

look-up table such that there is no need of calculating the correction
to the velocities at every collision.

2.6.4 Collision with Rotation

We now consider two spheres i and j of the same radius R and mass
m. Due to friction, angular momentum is exchanged if particles collide
with nonzero tangential velocity. The equations of motion for rotation
are

Id;t)i =rAf; (2.138)
where I denotes the moment of inertia and f; the forces exerted on par-
ticle i. For more details on rigid body dynamics, we refer to Sec. 2.3.2.

In the case of two colliding disks of radius R, moment of inertia I

and mass m, the exchange of angular momentum is
I (w; — w;) = —mRn A (Vi —v;),

I (w; - wj> = mRn A (v; _ v]») ) (2.139)
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with the primed velocities representing the ones after the collision.
Together with the conservation of momentum

v+ v} =v;+v, (2.140)

we obtain the angular velocities after the collision according to

R
—w = A (vi—vi). (2.141)

! —
W, —w; =w i

The relative velocity between particles i and j is
u;j = vi — vj — R (w; + wj) An, (2.142)

with n being the unit vector pointing from particle i to particle j. We

decompose the relative velocity into their normal and tangential com-
Z.
that we are at this point not interested in the relative velocities of the

ponents u!. and ufj, respectively. It is important to keep in mind
centers of mass of the particles. For the angular momentum exchange,
we have to consider the relative velocity of the particle surfaces at the
contact point. The normal and tangential velocities are given by

n P ..
uj; = (ujjn) n,
t . N
bt

= -—nA (nAuy) (2.143)

General slips are described by

t!
u,. =eu

ij zt]/ (2~144)

where the the tangential restitution coefficient e; accounts for different
slip types. The perfect slip collision is recovered for ¢, = 1 which
implies that no rotation energy is transferred from one particle to the
other. No slip at all corresponds to e; = 0. Energy conservation only
holds if e; = 1. Energy is dissipated if e; < 1.

If we compute the difference of the relative tangential velocities be-
fore and after the slip event, we obtain

!
(1—er) uj; = uj; — wj;

= Kvlg/_vf—v§’+v;) —R(wg—wi+w}—wj) /\n}.
(2.145)

Combining the last equation with Eq. (2.141), we obtain an expression
without angular velocities

!/
(I—e) uf]- = “fj - “zt'j

== 2 (v = vi) 429 (v~ v1)] (2.146)
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and finally

(1—er)uf; . mR?

Analogously, we find for the remaining quantities

_ t
vt = vt a et)uij

A I
(1—et)uf]-/\n

r—w;— ——— - 2.148
wl wl ZR (1+q_1) 7 ( 4 )
) (1—e) uf]. An
= SR (g
And the updated velocities are
(1 — €t) ut.‘
Sy —ut— Y
AT
2.1
(1 e ut (2.149)

)

R n
V] —V]+u1]+72(1+q) .

2.6.5 Inelastic Collisions

The kinetic energy of interacting and colliding particles is not constant
due to friction, plastic deformation or thermal dissipation. As an ex-
ample, we could think of a rubber ball dropped from a certain height.
Due to energy dissipation, the ball will not reach the same height as
before after bouncing back from the ground. We account for energy
dissipation effects in an effective manner by introducing the restitution
coefficient r. The restitution coefficient is defined as

Eafter vafter 2
r= Ebefore ~ | ybefore ’ (2.150)

where Ef*" and EP¢fore are the energies before and after the interaction

after before

event, and v%"¢" and v are the corresponding velocities.  Elastic
collisions correspond to r = 1 whereas perfect plasticity is described
by r = 0. Complementary to our previous discussion of collisions
with rotations, we distinguish between normal and tangential energy

transfer and define the corresponding coefficients

Z)after
en = \/Th = vafore’ (2.151)

n

- - Z);-?n‘ter
e =1t = W (2.152)
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In the case of a bouncing ball, the restitution coefficient accounts for ef-
fects such as air friction, deformations and thermal dissipation. These
coefficients strongly depend on the material, the shape of the particles,
the involved energies, the angle of impact and other factors. Usually,
they are determined experimentally.

The relative velocity of the particles at their contact point is

wj; = (wyn)n = [(v; —vj)n]n. (2.153)

The normal velocity components are affected by inelasticity. In the
case of an inelastic collision, dissipation effects lead to reduced normal
velocities

/
uZ. = enu;}. (2.154)

For e, = 1, there is no dissipation whereas dissipation effects occur
for e, < 1. We follow the derivations of Sec. 2.6.4.
The velocities after the collision are given by

1
Vi, =V; — ( —;en)ll:-},
(2.155)
vi=v;+ (1+e")u’? ”
j j > i
In the case of perfect slip, the momentum exchange is
Apn = —meg(1+en) [(vi —vj)n|n. (2.156)
With g = mTRZ, the generalized set of Egs. (2.147) and (2.148) is given
by
vy e, (-e)uy
RO T A TR
t
1—|—€) (1—et)ul~
V/‘ = V; + ( n un. ],
P 2 U 2(1+9) (2.157)
/ (1—e) ufj An .
TR ORA )
t
W = LA
7 2R (1471

and describes inelastic collisions of rotating particles. ~ For almost
all physical particle simulations, it is important to incorporate energy
dissipation effects by accounting for inelastic collisions. A prominent
example is the so-called inelastic collapse. This effect occurs in regions
of high particle densities, because the larger number of interactions
leads to larger dissipation effects and allows particles to form clusters
of locally higher densities. This effect is important to simulate the
dynamics of galaxies. Without this effect, stars would not be clustered
in the way they are in the universe.
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2.6.6 Inelastic Collapse

Figure 2.17: The orange particle at the

When simulating inelastic collisions, we may encounter finite time center is bouncing between the blue par-
. . . i . i ticles which approach each other.
singularities as described by McNamara [27, 28]. This effect is partic-
ularly important for the simulation of high density particle systems.
One example is a particle bouncing between two other particles which
approach each other. This situation is illustrated in Fig. 2.17. To un-
derstand the effect with an even simpler model, we consider a ball
bouncing vertically on a hard surface. Every time the ball hits the
surface its kinetic energy is lowered according to Eq. (2.150). As a con-
sequence, the ball will not reach the initial height anymore and the
time between two contacts with the surface approaches zero. After
a finite time, the ball comes to a rest, but the simulation takes infi-
nite time to run. In a event-driven simulation, the ball never stops its
motion and the number of events per time step increases. A similar
problem is the famous Zenon Paradox>. The total time needed for 5https://en.wikipedia.org/wiki/
the bouncing ball to come to rest is the sum over an infinite number of Zeno's_paradoxes
times between two surface contacts ¢;.

Since the height is directly proportional to the energy, it also scales
with the restitution coefficient at every surface contact. Consequently,
after the i" surface contact, the damping of the height is proportional
to 7. The total time is given by

o0
trot = Z ti
i=1

2 jinitial .
=2 h 2 Z Vri (2.158)

i=1

2 }initial 1
_2\/ g <1—\ﬁ_1>’

where hiMtal is the initial height and ¢ the gravitational acceleration.

The problem for event-driven particle simulations lies in the as-
sumption that interactions are instantaneous. However, real collisions
have a certain duration. Luding and McNamara introduced a restitu-
tion coefficient that depends on the time elapsed since the last event [29].
It is assumed that a collision takes a finite time tcontact. If the time since
the last collision of one of the interacting particles t(/) or () is less than
tcontact, the coefficient is set to unity and otherwise to r. We thus obtain


https://en.wikipedia.org/wiki/Zeno's_paradoxes
https://en.wikipedia.org/wiki/Zeno's_paradoxes
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Ad) — r, for t > fcontact ~ OF A fcontact (2.150)
1, otherwise .

With this new re-definition of the restitution coefficient, the collision
type changes from inelastic to elastic if too many collisions occur dur-
ing feontact- Depending on the material properties of the colliding
particles, it is also possible to use more complex functional dependen-
cies of the restitution coefficient. In the case of very dense and viscous
materials, zero instead of unity may be a better choice. In this case, the
particles form clusters and stick together.

We now understand the main differences between the hard sphere
event-driven algorithm and the soft potential approaches. Binary and
instantaneous collisions determine the dynamics in an event-driven
simulation whereas multiple interactions might occur at the same time
in the other case.

2.7 Inelastic Collisions in Molecular Dynamics

2.7.1

In many cases, inelasticity is not just a minor correction to a well-
behaved and converging mathematical method. Many systems exhibit
no convergent behavior if dissipation is not taken into account. From
landslides to turbulent flow in aircraft engines, energy loss and dissi-
pation are often necessary for the simulations to be stable and useful
in practice. In this section, we briefly return to non event-driven MD
techniques to slightly modify and adapt these methods to incorporate
inelastic effects. We first focus on simple models such as damped os-
cillators and plastic deformations.

Damped Oscillator

In MD simulations that are not based on event-driven dynamics, we
incorporate inelasticity with the help of a damped oscillator. For the
corresponding equations of motion, we define the radial distance be-
tween two particles as r = R; + Rj — ‘xi - xj| and the effective mass as

. mlmz . . .
Meff = T Fm - The equation of motion is then

Meggh = —kr — 7, (2.160)
where k and <y are the spring constant and a viscous damping coeffi-
cient, respectively. The solution is given by

Ubefore

r(t) =

sin (wt) exp (—0t), (2.161)

_ 2 _ 52 - ]k = i
where w = /wj— 6%, wy = 4/ T and § = T are the oscillator

frequency, the ground frequency of the undamped oscillator and the
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damping factor, respectively.

A damping of the oscillator changes its frequency and the period
time T generally increases with the damping.

We regard collisions as a single damped oscillator cycle, for which
some energy is dissipated due to the damping. The period time of the
oscillator is defined by attractive and repulsive motion of interacting
particles. The collision lasts half the period of an oscillation, and when
the particle bounces back its kinetic energy is reduced. We therefore
compute the restitution coefficient according to

i (t4+T
en = r(r(t)) =exp (—0T) =exp <—\/4$) . (2.162)

This relation implies that a restitution coefficient uniquely deter-
mines a viscous damping coefficient according to

m ffk
=21In (en), [— e 2.16
Y (en) In (6n)2 g ( 3)

An important assumption that has been made is that the restitution
coefficient is constant throughout the complete interaction. This as-
sumption is violated for a Hertzian Contact for which sphere interac-
tions lead to altered shapes. In every collision, the kinetic energy is
reduced due to plasticity. The dependence between the energy loss
and the interaction overlap is non trivial. Our approach has then to be
corrected since the restitution coefficient is not constant.

2.7.2 Plastic Deformation

‘Smax

&

k1

ks
dp
)
Figure 2.18: An example of a plastic de-

In many engineering and industrial applications, collisions of two formation.

deformable objects are characterized by an irreversible change of their
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shapes, a so-called plastic deformation. An example is shown in Fig. 2.18.

One approach to model plasticity has been introduced by Walton
and Braun [30]. The attraction and repulsion events are modeled by
springs with two different spring constants k; and k,. This results in
hysteretic and non-linear behavior. In particular, the interaction is dis-
sipative and non-elastic. We show the interaction process in Fig. 2.18.

Elastic

The force is

k16, loading,

foys = (2.164)

ko (6 — Jp), unloading.

First, the objects approach each other according to Hook’s law and
overlap up to dmax 50 that ki = fmax/Jdmax. During this time the objects
are deformed and therefore repulsion occurs with a different spring
constant ko = fmax/ (dmax — o) such that the repulsive forces vanish
before the overlap parameter does.

Plastic

The collision time is not symmetric since loading lasts longer than
Figure 2.19: Two particles undergoing

. n ﬁ . ﬂ (2.165) elastic and plastic interactions.
“T2Wh V) 0

The dissipated energy corresponds to the area enclosed by the two

unloading, i.e.,

curves. From this observation, we obtain the restitution coefficient

Eafter _ kl

= oo ~ &y’ (2.166)

r

2.7.3 Coulomb Friction and Discrete Element Method

The energy dissipation due to Coulomb friction is proportional to the
normal force. Two friction coefficients are used to take such dissipation
effects into account. The static friction coefficient describes friction
effects of non-moving objects and the dynamic coefficient accounts for
friction of moving particles. The classic example of Coulomb friction
is an object located on an inclined plane. At a certain inclination angle,
the friction angle, the object begins to slide down the plane. The tangent
of the angle gives the static friction coefficient. The motion of the object
is independent of the contact area.

Numerically, the problem is very difficult to handle, because the
friction coefficient u is described by a discontinuous function. For
non-zero tangential velocities v; > 0 the dynamic friction coefficient
ug is different from the static one yus when v; = 0.

One approach is to distinguish between a small shear velocity vs
below which static friction is implemented and above which dynamic
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friction is used [31]. The tangential momentum transfer is then given
by

= 1) (S ) o o
(2.167)
Apt = pgmeg (er + 1) (V?efore - V}?efore) t for ou;>1,
where t is the tangential unit vector. For multiple particles interact-
ing via friction such as sand or stones, a method proposed by Cun-
dall is nowadays a standard [32]. This forward integration technique
is widely used in engineering and industrial applications. The com-
pany Itasca has been founded by Cundall himself and is the leading
provider of software which is based on this method.
Similarly to the method mentioned before, we introduce two terms
for the strength, one for the static and one for the dynamic interaction,
ie.,

fi = —min [yvy, 4y fu] sign (vt) (2.168)
ft = —min [[ks{|, ps fu] sign (vt) (2.169)

The difference from the method used before is the behaviour of the
particles if their velocities are very small. If the velocities are smaller
than a certain value, then a spring is applied by introducing an elastic
force with constant ks. If |ksG| > psfn, then the spring is removed
and the particles are free to move with the static or dynamic friction
coefficient depending on their velocity.

2.8 Arbitrary Shapes

2.8.1

So far, we only considered spherical particles in our discussion of even-
driven MD methods. However, it would be also desirable to simulate
interactions between arbitrarily shaped particles. Such methods are
relevant for the study of numerous systems which consist of particles
of irregular shapes. For some cases such as ellipsoidal particles, it
is possible to obtain analytical solutions of the interaction dynamics.
For the more general treatment of arbitrarily shaped particles, we also
discuss polygon and spheropolygon methods.

Ellipsoidal Particles

To simulate the interaction of ellipsoidal particles, we consider two
ellipses whose parameterization is given by

2 2
X~ Xa Y=Y\ _
( o ) + ( P ) 1, (2.170)

2 2
X—Xp Y=¥\ _
< by ) + ( b ) 1. (2.171)

243
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The two ellipses are illustrated in Fig. 2.20. As suggested by Perram

and Wertheim, we take the overlap of the two ellipses as a measure
for the interaction [33]. To calculate the overlap, we transform the
ellipses into circles using an appropriate metric. Let uj, up and vy, v,
be orthonormal vectors along the major axes of the ellipses A and B,
respectively. The rotated ellipses are defined by the matrices

A=Yatweu and B=Yhiwov g
k k

Ellipse A is then described by the functional
Ga(r) = (r_ra)TA(r_ru) (2.173)
which is smaller than one inside the ellipse, larger then one outside
and exactly one on the ellipse, i.e.,
<1, if ris inside the ellipse,
Ga(r)=1<1, if r is on the ellipse, (2.174)
> 1, if ris outside the ellipse.

The same formalism is applicable to ellipse B. We now define an-
other functional

G(r,A) =AGa(r) +(1—A)Gp (1), (2.175)

which describes the two ellipses with a parameter A € [0, 1] that inter-
polates between the two centers of the ellipses defined by Eq. (2.173).
With the help of G (r, A), we want to compute the contact point. There-
fore, we have to minimize the functional according to

Vi G(r,A) =0. (2.176)

|r:rm

This yields
tn (A) = [AA+ (1 —A)B] ' [AAr, + (1 —A) Bry]. (2.177)

Figure 2.20: Two overlapping ellipses.
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If we start from A = 0 and arrive at A = 1, we obtain a path from the
center of the first ellipse to the to center of the second one. We rewrite
the path in terms of r,, = r;, — r,; and find

-1
tw(A) =10+ (1—A) AL {(1 “ M)A+ AB*} Tap)
1 (2.178)
£ (A) =1, = AB [(1=2) A7+ AB7Y] g

If the value of the functional along these paths between the centers
is always smaller than unity, we know that we never left the interior of
the ellipses, and hence they overlap. We define the overlap function

5(A) =G (rm(A),A) (2.179)
and by inserting Eq. (2.178) we obtain

SA)=A1-A)r], [(1 —A) AT+ /\Bfl} - T (2.180)

This corresponds to the length of the minimal path that connects
the two centers. As already mentioned, we are interested if the path
ever exhibits values larger than unity. If we maximize S, we will be
able to tell if the ellipses are overlapping or not:

<1, if the ellipses overlap,
S(Amax) = 41,  if the ellipses touch, (2.181)

<1, if the ellipses are separated.

With this knowledge, we compute the contact point for stiff ellipses
where overlaps in the simulations should be avoided. We set S (Amax)
to unity and find the contact point with

* T -1 1]t
7 = ¢ Amax (1 - )\max) e, {(1 - )\max) A7 4 AmaxB } € ’
(2.182)

=

Figure 2.21: Overlap vector and contact
point for two ellipses.
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where r,;;, = re,. We define the overlap vector as

e, — r
f=—"" (2.183)

and the corresponding contact point as
Tpe = r;‘,c +¢. (2.184)

This is illustrated in Fig. 2.21.

Moreover, there exist generalized versions of ellipses, so-called su-
perellipsoids, and their macroscopic properties exhibit interesting fea-
tures such as high packing densities [34, 35]. An example of a superel-
lipsoid packing is shown in Fig. 2.22. Industrial engineering, biological
system design (e.g., blood cells) and many other fields often rely on
simulations of macroscopic particles, often ellipsoidal, and this is why
these techniques found such a big resonance today.

We saw that even for the simplest generalization of spheres, it was
already necessary to develop complex analytical methods. This sub-
stantially increases the computational complexity of the needed sim-
ulation algorithms. For this reason, it is necessary to develop new
approaches to handle objects of arbitrary shapes.

Polygons

A particular class of macroscopic particles are those described by poly-
gons such as rocks and sand grains. In this case, a better measure
for the repulsive forces is the overlap area. The advantage of sim-
ple polygons is that it is possible to compute the overlap area using
simple geometries (e.g., dividing the area into triangles). However,
between polygons there can be many different types of contacts, and
the classification and the identification of all the types of contacts is
very cumbersome as shown in Fig. 2.23.

Additional complexities arise when the overlap area does not repre-
sent the actual overlap of the polygons or when discontinuities appear
while particles move into another. Furthermore, rotation of particles
require an additional treatment, as the torque strongly depends on the
shape of the particles. Due to the mentioned reasons, the simulation
of objects composed of polygons may be cumbersome.

Spheropolygons

Figure 2.22: An example of a superellip-
soid packing. The figure is taken from
Ref. [35].
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Another class of methods that is more efficient than the mere di-
vision into polygons relies on spheropolygons [36]. This technique was
invented by Fernando Alonso-Marroquin, who uses the Minkowski cow
for demonstrative purposes. An example of a Minkowski cow is shown
in Fig. 2.24. This particular shape is obtained by sweeping a disk
around a polygon of multiple and arbitrary edges that resemble the
shape of a cow.

The important feature of the spheropolygon method is that it is
possible to simulate arbitrary shapes. Once the shape is decomposed
into spheres, we only have to compute the contact between all the
pairs of spheres that define the edges and vertices of the shape which
is easier than considering arbitrary shaped polygons. There are of
course a number of constraints when approximating the shapes in such
a way. For example, too large spheres would smear out the original
shape and would even lead to wrong results. Imagine that the spheres
at the edges were larger than the distance between the hooves or the
distance between the tale and the rest of the cow. Substantial features
of the shape would be lost.

Many other techniques have been developed to describe arbitrary
shaped objects. Many attempts to create more effective implementa-
tions are developed by engineers, physicists and mathematicians. An
important example is the field of mathematical morphology developed by
Jean Serra in the 1960s [37]. The techniques of Marroquin are related
to the so-called dilation techniques but there are also other methods like

Figure 2.23: Possible overlaps of trian-
gles.

Figure 2.24: The Minkowski cow as an
example of an irregular shape composed
of spheropolygons. The figure is taken
from Ref. [36].
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the erosion technique. There exist specialized courses which only cover
some of these methods and techniques.

2.9 Contact Dynamics

We started our discussion of MD simulations by introducing inte-
gration methods to directly solve Newton’s equations of motion for a
certain number of interacting particles. Such direct integration meth-
ods are able to capture the dynamics of particles which interact via soft
potentials. To overcome the problem of infinite forces in the case of
hard-sphere potentials, we introduced event-driven MD techniques in
Sec. 2.6. The advantage of event-driven MD is that it is not necessary
to compute forces, because we are only considering binary collision
events and accounting for the corresponding momentum and angular
momentum transfer. However, there also exist some drawbacks such
as the inapplicability of this method for studying long-lasting con-
tacts. Such long-lasting contacts may occur in granulates, rocks, and
machine parts. One example is shown in Fig. 2.25. Until now, we have
not introduced a method which is able to simulate such a woodpecker
toy. Simulating such and related systems requires to also resolve the
observed contact interactions. This is done in the context of contact dy-
namics. The basic idea is that particle interactions are fully determined
by constraints. Specifically, to prevent the penetration of particles, we
impose constraint forces at their contacts.

Per Lotstedt is one of the founders of contact dynamics but just
with contributions of Jean-Jacques Moreau the field started flourishing.
Moreau was working in Montpelier and he mainly focused on topics
in the fields of numerical analysis and elliptic equations. Even after his
retirement, he was actively engaged in scientific research, and worked
almost until the end of his life, aged go years [39]. The field of contact
dynamics is strongly related to the study of problems in non-smooth
mechanics where the time evolution of the particles’ positions and mo-
menta are not assumed to be described by smooth functions anymore.
An important problem in this field is the ambiguous boundary condition
problem or Signorini problem which has been originally formulated by
Alberto Signorini. The problem is to find the shape of an elastic body
located on a rigid surface. We could, for example, think of a rubber
placed on the surface of a table. Perfectly rigid bodies with perfect vol-
ume exclusion are described by the Signorini graph. If particles are not
in contact, there are also no forces between them. Forces only occur if
the distance between both particles is zero. As shown in Fig. 2.28, this
causes force discontinuities which are difficult to handle numerically.
Such force discontinuities may also occur due to friction between par-
ticles. We therefore consider two particles that are in contact. If their

/N

Figure 2.25: A woodpecker as a bench-
mark example for contact dynamics
problems [38]. An animation can be
found on https://github.com/gabyx/
Woodpecker.

ol

Figure 2.26: Per Lotstedt

Figure 2.27: Jean-Jacques Moreau (1923-
2014)
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relative velocity is zero, there is no friction. However, for non-zero
relative velocities, we have to take into account friction between the
two particles. The resulting discontinuous behavior is shown in the
Coulomb graph in Fig. 2.28.

One-dimensional Contact

ext ext
F1 FZ

m.=m,=m

To familiarize with the concepts of contact dynamics, we first focus
on the example of a one-dimensional contact as shown in Fig. 2.29. In
this example, we neglect friction and only consider normal forces at
the contact point of the two particles. Both particles have mass m and
velocities v; and v,, respectively. ~We have to make sure that these
two particles do not overlap. Therefore, we impose constraint forces in
such a way that they compensate all other forces which would lead to
overlaps. Such constraint forces should be defined in such a way that
they have no influence on the particle dynamics before and after the
contact. The time evolution of the particles’ positions and velocities is

Figure 2.28: Signorini  (left) and
Coulomb (right) graphs.

Figure 2.29: Example of a one-
dimensional contact.
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described by an implicit Euler scheme which is given by

1
v; (t+ At) = v; (t) + At—F; (t + At),
(£ 88) = Vi (1) + A F; (14 A1) o

r; (t + At) =1 (t) + Atv; (f + At) .

The forces F; (t) = F (t) 4+ R; (t) consist of an external F$*! (t) and
a contact term R; (f).  So far, we only considered forces that act on
the center of mass. However, contact forces act locally on the contact
point and not on the center of mass. We therefore introduce a matrix
H which transforms local contact forces into particle forces, and the
corresponding transpose H' transforms particle velocities into relative
velocities. We consider the example of Fig. 2.29.
This leads to

v}fc =7y — U = (—1 1) (Z;) =HT (Zi) (2.186)

R —Rloe -1
()= (&) = (V) oo
n

The equations of motion for both particles are

d o1\ 1 Rl Fext
a <02> = % l<R2> + (1%)&)] . (2.188)

Combining the last equation with the transformation of Eq. (2.187), we

doloe 1 K—l) | (Pexf
=(-1 1) Rloe 4 (1
dt ( )m 1 F5 (2.180)

= LRLOC_F 1 (erxt_ 1ext),

Meff m

obtain

where e = m/2 is the effective mass and L (FsXt — F&) the acceler-
ation without contact forces.

We integrate the last equation with an implicit Euler method as
defined by Eq. (2.185) and find

loc loc
00¢ (1 + At) — 0,0 (¢t 1 1
n ( ) n ( ) RLOC (t At)

x5 —_— P (B — FPY) . (2.190)
e

The unknown quantities in this equation are v!°¢ and R!°. To find a
solution, we make use of the Signorini constraint and compute

01o¢ (£ + At) — oloofree (4 4 A

1
RnoC (t + At) = Meff Al

(2.191)
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with

1
ol e (14 AF) = 00 (1) + At (B = ). (2.192)

No overlap (e.g., no contact or closing contact) at time ¢ + At corre-
sponds to
d(t+ At) = d(t) + 01 (t + At)AE >0 (2.193)

and RI%¢(t + At) = 0. Otherwise a contact persists or forms during the
time step, i.e., the gap d closes, and we impose

da(t
VI (t + At) = —%. (2.194)
The contact force is then given by
—d(t)/ At — 0% T (1 4 At
RIC (£ + At) = mg (£)/ < (t+ ). (2.195)

At
The Signorini condition can be reformulated in terms of velocities to
then find the intersection with Eq. (2.191). For particles that are not in
contact, the contact force vanishes and the relative velocity is different
from zero. This case corresponds to the open solution. In the case
of a persisting contact, the contact force is different from zero and the
relative velocity vanishes.
We distinguish between the possible cases:

e Particles are not in contact,

® Particles are in closing contact,

e Particles are in persisting contact and,
¢ Particles are in opening contact.

It is not necessary to consider the influence of contact forces, if the
particles are not in contact. However, for particles that are approach-
ing each other, we have to take into account the possibility of overlaps
in every time step. In the case of an overlap, constraint forces have to
be applied such that the overlap vanishes. In addition to the normal
contact forces, we may also consider tangential contact forces contribu-
tions. The reason is that collisions between grains are usually inelastic,
i.e., energy is dissipated through vibrations (sound) and eventually
also small plastic deformations and heat production. Therefore, we
also have to consider tangential contact forces in the case of friction.
For simplicity, we may assume that the static and dynamic friction co-
efficients are equal (s = p). Similar to the solution of Eq. (2.191), the
solution for the tangential contact force can be obtained with the help
of the Coulomb graph of Fig. 2.28.

We now extend the described contact dynamics approach to three
dimensions. In particular, we consider particle interactions without
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friction. Thus, we do not need to take into account angular velocities
and torques. In three dimensions, velocities and forces are given by

X X x,ext
U A IRV
ex ,
Vi = 012 R12 = R12 FlZ = F12 . (2196)
Z z z,ext
Y12 Ri, Fp

Only normal components v1° and R have to be considered during

particle contact. We therefore project all necessary variables onto the
normal vector

n
n=|n (2.197)
nZ
and obtain
U¢=mn-(v2—vi) Ry=-nR™ Rp=nR> (2.198)

From the projection, we obtain the matrix H for the coordinate
transformation

o = HT <V1> and <R1> — HRY, (2.199)
V2 R

H' = (—nx, —ny, —nz, ny,ny,ng) . (2.200)

with

Friction can be included by considering angular velocities and torques.

Generalization to N Particles

To describe the interactions of N particles using contact dynamics
methods, we use the generalized coordinates

Vi R1 F?Xt
w1 T 0
g=1| : |, R=1] : and F*'=1| : |. (2.201)
VN Ry F
WwWN TN 0

The number of components depends on the dimension of the simu-
lated system. In two dimensions we have 3N components (2 transla-
tional and 1 rotational per particle) whereas in three dimensions there
are 6N components (3 translational and 3 rotational per particle).

Let ¢ be the number of contacts. In two dimensions, there exist
2c contact variable components (1 normal and 1 tangential), while in
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three dimensions the number of contact variable components is 3c (1
normal and 2 tangential). We neglect the influence of torques at the
contact points and find

loc loc
Vi Rj
u= : and Rl° = : . (2.202)

loc loc
Ve Rc

The corresponding transformation into contact variables is given by
u=H'4 and R= HR°c. (2.203)

The matrix H is not constant as in the case of the one-dimensional
interactions of two particles. At every time step, the particles involved
in a certain contact and the kind of contact change. The dimensions
of the matrix are 2c¢ x 3N in two dimensions and 3c x 6N in three
dimensions.

In two dimensions, we define the diagonal mass matrix M as

& - 0 m 0 0
M=1]: - with ¢;=]10 m 0]. (2.204)
0 --- &y 0 0

With the prior definitions we obtain
Mg (t) = R (t) + F& (2.205)

Based on the relation
u= HTq, (2.206)

we find

u=H' (M’lR () + M*lFeX*)

(2.207)
= HIM™ R (t) + HTM~1Fe,
Using contact variables yields
i =H M THR + HT M~ et (2.208)
and we define the effective inverse mass matrix
M;ffl =H'M'H. (2.209)

We solve the resulting system of equations with an implicit Euler
scheme as in the case of the one-dimensional contact according to
u (t+ At) — ufree (t + At)

RIC (t + At) = Mg Af . (2.210)
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The dimensions of the vectors change over time since the number of
particles in contact is not constant. To solve Eq. (2.210), we perform
a direct inversion of Mgffl = HTM~'H. To determine u(t + At), the
constraints are added by checking if the contacts close.

Friction, rolling friction, and cohesion can be simulated by modi-
fying the constraint forces. Up to now, we only spherical particles.
As described in Sec. 2.8.3, non-spherical objects can be composed of
spherical objects, e.g., by additional constraints between particles. For
non spherical rigid objects of finite volume (e.g., polyhedra) this can
be done approximately.

2.10 Particles in Fluids

In our event-driven and contact dynamics models of particle interac-
tions, we considered friction and energy dissipation effects in terms of
the interaction of rigid bodies. However, inelastic collisions are also
relevant if we think of fluids surrounding particles. ~Simulations of
particle dynamics in fluids is highly relevant for optimizing certain
structures in the sense of minimizing friction and turbulence effects.
We therefore consider an incompressible fluid of density p and dy-
namic viscosity p. It is described by the incompressible Navier-Stokes

equations

2% 4 (70) = ~Lp 4 i ay

The velocity and pressure fields are denoted by u (x) and p (x), respec-
tively. Since the density p is constant, the continuity equation
dp

FTi V (pu) =0 (2.212)

leads to Vu = 0.
We classify the fluid flow according to the Reynold’s number

uh < 1 Stokes limit,
Re=— = (2.213)
H > 1 Turbulent limit,

where u and h represent a characteristic velocity and length scale, re-
spectively.

There are two possibilities of modeling particle-fluid interactions.
First, in a continuum approach the fluid is described by differential
equations such as Egs. (2.211) and (2.212). Second, it is possible to
use particle-based models of fluids. Different methods are applicable to
solve such problems. Some examples include

¢ Penalty method with MAC,

¢ Finite volume method (FLUENT),
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® k — e model or spectral methods for the turbulent case,
e Lattice-Boltzmann method,
* Discrete methods.

In this section we briefly describe some continuum approaches, and
give an overview on particle-based methods.

Continuum Methods

Fluid-particle interactions occur on the exposed surface. To describe
particle dynamics in a fluid, we have to solve the Navier-Stokes equa-
tions by considering the boundaries defined by the moving particles in
the fluid. Consequently, the boundaries of the fluid are also moving.
Thus, the motion of the fluid has to be determined for each time step.

Based on the fluid motion, we are able to extract the forces exerted
on the particles which enables us to solve their equations of motion.
The total drag force is obtained by integrating the stress tensor ® of
the fluid over the particles” surfaces

Fp = / OdA, (2.214)
r
with
B du;  Juj
@1] = _P‘Sz/ +77 (ax] + axl> ’ (2.215)

where 7 = pyu is the static viscosity and p the hydrostatic pressure.
In the Stokes limit for Re < 1, the drag law is given by

Fp = 6mRu, (2.216)

where R is the radius of the particle moving in the fluid. The Stokes
law is exact for Re = 0. In the case of turbulent flow for Re > 1, the
drag force is (Newton’s law)

Fp = 0.2271pR?u>. (2.217)

The general drag law is

2
Fp = %CDReZ, (2.218)
where Cp denotes the drag coefficient. It depends on the velocity of
the particle in the fluid, and on the density and the viscosity of the
fluid.  These laws are based on the assumption of spherical particles
and other simplifications, and we may encounter substantial devia-
tions in experiments. In certain cases, it is important to also consider
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the influence of pressure or velocity gradients which lead to lift forces

F = %CLpAuz, (2.219)

where Cp is the lift coefficient. In addition to drag and lift forces,
rotating particles experience a torque

T= / rem A ©dA. (2.220)
r

For cylinder of radius R and angular velocity w, the corresponding
Magnus force is
Fy = ZnRzpuw. (2.221)

There exist empirical relation for drag coefficient in certain Reynold’s
numbers regimes. For example, Dimitri Gidaspow suggested the fol-
lowing drag coefficient dependence:

2 (1+015ReX%7)  Re, < 1000,
0.4 Re, > 1000,

Cp = (2.222)

pslv—u|Ds
v

where Re, = . Here D; is the particle diameter and |v — u| is

the absolute value of the particle velocities compared to the fluid.

2.10.2 Stokesian Dynamics

Brady and Bossis introduced a method to study Stokesian dynamics
(Re < 1) [40]. The Stokes equation is

%—1; = —;Vp + pAu. (2.223)

The Green’s function of the Stokes equation is the Stokeslet

1 /9 Tat
Giﬁ (r) = 8 (iﬁ + ':,3/5) . (2.224)

A general solution for the velocities fields of N particles is then

N
u(x)=— Z/r G°OndT;. (2.225)
i=1v"i

The drag force on a surface element ijk is determined according to

fij = @'kn. (2.226)
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2.10.3 Lattice Boltzmann Method

Based on the Chapman-Enskog theory, it is possible to derive the
Navier-Stokes equations from the Boltzmann equation. This connec-
tion between fluid dynamics and Boltzmann transport theory allows
us to simulate the motion of fluids by solving the corresponding Boltz-
mann equation on a lattice. The basic idea is that we define on each site
x of a lattice on each outgoing bond i a velocity distribution function
f(x,v;,t) whose updates are given by

1
fx+v,v;,t+1)— f(x,0;,t) + F(v;) = = [f*1— f(x,v;,1)], (2.227) 2
' 6 4 5
the equilibrium distribution is »
£ =nw; |1+ iuV‘ + - (uV')2 —szuu (2.228)
i ! 27t o4 ! 202 : : 3 < > 1
0\\
One possible choice of the weights in two dimensions is
4
4/9 =0, / Y 8
wi=41/9 i=1234, (2.229) 4
1/36 i=25,6,7,8. Figure 2.30: Lattice Boltzmann weights

in 2D (D2Qg).

The positions of the indices are illustrated in Fig. 2.30.

2.10.4 Stochastic Rotation Dynamics

Stochastic Rotation Dynamics (SRD) is a particle-based fluid modeling
approach [41]. This technique is also known as Multi-particle Collision
Dynamics (MPC). In this method, we discretize the space into cells and
model the fluid as a system composed of N particles with mass m and
coordinates x; and v;. The particle positions and velocities are updated
according to

/
j (2.230)
1

where u = (v) is the mean velocity of particles in the respective cell
and () is the rotation matrix. It is given by

cos(a) +sin(a) 0
Q= |Fsin(a) cos(a) O0f. (2.231)
0 0 1

The collective fluid particle interaction is modeled by rotations of local
particle velocities. In this model, Brownian motion is intrinsic. These
very simple dynamics recovers hydrodynamics correctly.
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2.10.5 Direct Simulation Monte Carlo

Direct Simulation Monte Carlo (DSMC) is a particle-based simula-
tion technique which is appropriate to model particle systems at large
Knudsen numbers [42, 43]

Kn=—, .

n= (2.232)
where A is the mean free path and L a characteristic system length
scale. It is very popular in aerospace modeling, because the atmo-
sphere is very thinned out at high altitudes and the corresponding
Knudsen numbers are large.

Figure 2.31: In DSMC Ng simulators
o PN represent one physical particle.

Physical molecules
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DSMC simulators

In this method, we divide the system into cells and generate parti-
cles in each cell according to desired density, fluid velocity, and tem-
perature. For fluid velocities and temperatures, we assign a velocity to
each particle which is distributed according to the Maxwell-Boltzmann
distribution. In DSMC the number of simulation particles (simulators)
is typically a small fraction of the number of physical molecules. Each
simulator represents Ng¢ physical molecules. This is shown in Fig. 2.31.
The accuracy of DSMC scales as 1/ N; for traditional DSMC about 20
particles per collision cell is the rule-of-thumb.

Collision are modeled by sorting particles into spatial collision cells.
We then iterate over all cells and

1. compute the collision frequency in each cell,
2. randomly select collision partners within cell,
3. process each collision.

We note that collision pairs with large relative velocity are more likely
to collide but they do not have to be on a collision trajectory.
The material surface may be treated with a thermal wall, which
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resets the velocity of a particle as a biased-Maxwellian distribution

mvxz

vee ZBTw,

P, (vy) =%

m
kBTW

m(oy—upy)?
m VYW
Py, (oy) = \/ me HETw (2.233)
2
m __mug
Py, (v7) = 1/me ZpTy

2.10.6 Dissipative Particle Dynamics

Another particle-based fluid simulation approach is the so-called Dis-
sipative Particle Dynamics (DPD) [44]. The particle interactions are de-
scribed by
Fi=)_ (fS + ff} + ff;), (2.234)
i#]

where f% denotes the conservative forces, fX

)
the dissipative forces. The dissipative forces are proportional to the

the random force and le‘?

particle velocities. The weights of the random and dissipative forces
must be chosen such that thermal equilibrium is reached [45].

2.10.7 Smoothed Particle Hydrodynamics

Another important technique in the field of computational fluid dy-
namics is Smoothed Particle Hydrodynamics (SPH). This method uses
smooth kernel functions W to represent properties of particles in a weighted
sense [46, 47]. Instead of localized positions and velocities, the particle
characteristics are smoothened over a smoothing length i. An arbi-
trary quantity A is then given by

A(r):/QW(‘r—r’

Jh)A(F)dr = Z@W (|r =7, h) Aj.
i P
(2.235)
In this method, no spatial discretization is necessary and even com-
plex geometries can be interpolated and simulated with SPH. This
makes this method broadly applicable in many different fields where
fluids interact with complex structures.
Example of a kernel functions include Gaussians or quadratic func-
tions

3 1
W (r,h) = ) (4q2 —q+ 1) (2.236)

with g = ;- and r = |, — r4|. Another advantage of this method is that
kernels may be changed without much effort for a given simulation
framework [48].
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Quantum Mechanical Approaches

Simulating the interaction of macroscopic objects such as billiard balls,
grains and rigid bodies is based on solving Newton’s equations of
motion. To a certain extent, it is also possible to consider classical
approaches for the simulation of molecules if the bond length can
be assumed to be constant given certain environmental conditions,
cf. Sec. 2.3.1. However, for the ab-initio (i.e., from first principles) sim-
ulation of molecular and atomic interactions we have to take quantum
mechanical effects into account. In the subsequent sections, we there-
fore briefly discuss the main quantum-mechanical methods which are
necessary for ab-initio MD simulations. In particular, we introduce
the concept of wave functions, the Born-Oppenheimer and the Kohn-
Sham approximations. We conclude the section with introducing the
Car-Parrinello method.

Introduction

In quantum mechanics the wave function ¥ (x, f) at position r is repre-
sented by a vector |¢) of the Hilbert space L? (R®). The corresponding
scalar product is

Wley = [ e r. (2237)

In general, a quantum state is a vector |i) of a Hilbert space over C
with scalar product (¢|¢). All states fulfill the normalization condition

Wly) = [ 9" @y mdr=1 (2239)

and are uniquely defined up to a phase ¢/® with « € R, i.e.,

) o< e™ [y) . (2.239)

According to the statistical interpretation of the wave function (Born
rule), the probability density | (r)|* denotes the probability of finding
a particle described by ¢ at position r. Observables are represented by
self-adjoint operators A with the expectation value (| A|y).

Given a Hamilton operator

2

H= Zp—m +V(r) with p=—ihV, (2.240)

the time evolution of the function t — |¢) is described by the time-
dependent Schrodinger equation

- d ()
ih ar

= Hpy). (2:241)
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Applying the method of separation of variables with ¢; (r) = ¢ (r) ¢ (¢)

reveals that the time evolution is given by
¢ (1) =e /T (2242)

with E being the expectation value of the Hamilton operator. The
time-independent Schrédinger equation is thus

hz
—5 V2 + V(1) ) =Elyp). (2243)

For the simulations of quantum-mechanical particle interactions, we
have to consider the many-body wave function of N particles

P (r1,51,12,52,-- -, IN,SN) (2.244)

where {si};c(1, ny- Similarly, many-body operators A are defined
by considering their action on all individual particles.

In the following, we use ¥ (1,2,...,N) to abbreviate the wave func-
tion of Eq. (2.244) and A(1,2,...,N) as an abbreviation of a corre-
sponding operator. We now define the exchange operator Pj; (1 <
i,j < N) according to

P (1,2, iy, NV =9 (1,2, fyee i N,

2.2
PIAL2 oesiyerjy e N) = AL 2oy N 0

The Hamiltonian commutes with the exchange operation since it is
invariant under particle exchange, i.e.,

[H, Pl]] =0. (2246)

We note that (Pij)71 = P;j and (Pl-]-)2 = 1. The two possible eigen-
values are thus +1 and —1 which are both realized in nature with the
corresponding wave functions

+y(1,2,...,j,...,i,...,N) Bosons,
-9 (,2,...,5,...,i,...,N) Fermions.

(2.247)
The wave functions of bosons are completely symmetric under parti-

v(L,2,... 0., j,...,N) =

cle exchange whereas fermions exhibit completely antisymmetric wave
functions.

In the case of fermions, this implies that two particles cannot be in
the same state due to

(4,2, 0 i . N) == (1,2, 0,0, N)=0. (2.248)
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This corresponds to the Pauli exclusion principle. A quantum-mechanical
description of N particles makes it necessary to construct many-body
wave functions by considering all possible particle permutations since
all particles (unlike classical ones) are indistinguishable. We consider
N particles which are not interacting with each other. The correspond-
ing Hamilton operator is

2

N .
H=Y'H, with H =2 4+v(r). (2.249)
i=1 2m

The states of each particle i, satisfy

Hipy (xi,s) = evpy (xi,57) - (2.250)
For bosons, the many-body wave function is

(1,2,...,N|yg) =95 (1,2,...,N)
= Y Py (r1,81) ¢, (12,52) -~ Yoy (TN, 5N)
PeSn
(2.251)

and for fermions we find
(1,2,...,N|yr) =9r(1,2,...,N)
= Y. sgn(P) Py, (r1,51) Yu, (r2,52) - - vy (1N, 5N)
PeSn
(2.252)

where P is the exchange operator for the states v; and sgn (P) is the
sign of the permutation P which is +1 (—1) if P is composed of an
even (odd) number of transpositions.

For fermions, it is possible to rewrite Eq. (2.252) in terms of the
so-called Slater determinant

Pu (1) o Py (1)
: - : (2.253)

P (N) oy (N)

We still have to normalize the many-body wave functions according
to

(plpp) = Nlny, Iny, !yt and  (Ppr) = NI (2.254)

In the case of Bosons, the index v may appear multiple times in Eq. (2.251).
Therefore, we have to account for the additional normalization factors
ny, which denote the number of particles in the stationary single parti-
cle state ;. For fermions, the occupation numbers 7, are either zero or
one. The calculation of Eq. (2.253) is computationally very expensive
and time consuming,.
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2.11.2 Implementation of Wave Functions

For the implementation of wave functions, the single particle wave
functions are often expanded in an orthonormal basis system with
some cutoff in the following sense

Vi =Y CikXk- (2.255)
k

In solid state physics a plane wave basis xx = exp (ikx) is often used
(plane wave functions are not localized, as the electrons in crystals).

We typically use as many plane waves as necessary until the energy
converges. For 16 water molecules, a cutoff of about 70 Ry is needed.
This corresponds in this case to about 15000 plain waves per electron.

Using localized basis sets can help to decrease the number of basis
functions for chemical problems. Wave functions are then dependent
on the ion positions. One possible choice are Gaussian-type orbitals
(GTOs)

xi(r) = or! exp (—Mz) . (2.256)

For localized basis sets so called Pulay forces appear. These forces are
due to numerical artifacts originating from a finite basis. They may be
up to an order of magnitude bigger than the physical forces and have
to be corrected.

2.11.3 Born-Oppenheimer Approximation

For the simulation of atomic and molecular interactions, we have to
describe the dynamics of the individual constituents. Instead of a full
quantum-mechanical description of both the nuclei and the electrons,
we make use of the fact that their masses differ by three orders of mag-
nitude. In this way, we determine the electron distribution for fixed ion
positions. This is the so-called Born-Oppenheimer approximation.

The Born-Oppenheimer Approximation implies that the time step
for the motion of ions has to be small enough, such that when ions
move, the electrons do not skip any energy level transition from energy
€; to €;41 according to

e (14 A1) — & (1)] < lers (1) — & (1)), (2.257)
where r is the ion position before the update and Ar = uAt with u
being the ion velocity and At the corresponding time step.

2.11.4 Hohenberg-Kohn Theorems

If the ground state is not degenerated, all information on this ground
state is contained in its density distribution n (r). It is possible to
obtain all observables based on # (r). The knowledge of the wave
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functions is not needed. To formalize this approach, we consider N
electrons described by a wave function ¥ with normalization (¥|¥) =
N. These electrons move around a nucleus with potential

2
Vi(r)=— 2 rZ_eri| , (2.258)

where Z is the nuclear charge number and e the elementary charge.
The corresponding Hamiltonian operator is given by

2 2
p; 1 e
H-Y oIy Y o a v e
=2m 25— &
j#i ] i
We abbreviate the Hamiltonian with H = F + V where F represents
the kinetic and electron-interaction energy contributions. All electrons
experience the same contribution of F. The ground state |¥y) is thus
completely determined by N and V (r).
We define the ground state particle density as

no (x) = (Yol (1) [¥o) = N [ [¥o (,12,...,rn)*drzdlry -+ diry,

(2.260)
where n(r) = Y;0 (r—r;) is the particle density operator. Hohen-
berg and Kohn (1964) have shown that (i) the external potential Vex
is uniquely determined by the ground-state electron density, and that
(ii) the ground state energy can be obtained by minimizing an energy
functional [49]. It is thus not necessary anymore to consider the wave
functions for non-degenerate ground states. Instead we use a density
functional approach.

Specifically, we proof claim (i) by contradiction and assume that
there exist two external potentials V (r) and V'’ (r) which give rise to
the same particle density 7 (r). The corresponding Hamiltonians are
H=F+Vand H =F+V and let

Eg = (Yo|H[Yo) and Ej= (Y(|H'|Y})- (2.261)
With these definitions, we obtain
Eo < (Yol H|¥) = (¥o|H'[¥o) + (¥ol (H — H') [¥5)

26
:Eg+/n0 (1) [V (x) — V' (1)] dr (2.262)

and

Ep < (¥olH'[¥o) = (YolH[¥0) + (Yol (H' — H) [Y0)
—Ey+ / o (x) [V/ () — V (r)] dr.

Adding Egs. (2.262) and (2.263) leads to the contradiction

(2.263)

Ey+ Ey < Eg + Ej. (2.264)

2-64
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Thus the potential V is (up to a constant) uniquely determined by
1 (r). We are now able to recast the problem of solving the Schrodinger
equation for our N particle system in variational form by defining the
energy functional

Ey[n] = /n (r) V(r) dr+ F [n]. (2.265)

The particle density n (r) determines the potential V (r) and the
ground-state |¥). For another potential V (r), we find

(Y|H[Y) = (FIF[¥) + (YIVI¥)

. (2.266)
:F[n]—i—/n(r)V(r)dr:EV [n] > Eo

according to the variational principle. The functional Ey; [n] equals Eg
if [¥) is the ground-state for V (r).

2.11.5 Kohn-Sham Approximation

Based on the Hohenberg-Kohn theorems, we are able to describe a
non-degenerate ground-state with density functionals. This was the
beginning of density functional theory (DFT). Earlier works by Thomas
and Fermi were too inaccurate in most applications. Further devel-
opments by Kohn and Sham made it possible to approximate the
electron-electron interactions in terms of non-interacting single par-
ticles moving in a potential which also only depends on the density
distribution. Additional correction terms account for many-particle
effects.

In the Kohn-Sham approximation, electrons are treated as single
particles interacting with the effective Kohn-Sham potential Vks. The
corresponding wave functions ¢; (r) with i € {1,..., N} and energies
€; obey

2
[ n V2 + Vks (1) | ¢ () = ety (x) . (2.267)

" 2m

The Kohn-Sham potential is given by

Vs (r) =V (x) + 62/ |11£1"r) dr + Vic (1), (2.268)

'
where V (r) is an external potential (e.g., nucleus), Vi. (r) = §Exc [n] /én ()
a potential term accounting for exchange and correlation effects, and
Exc (r) the exchange-correlation energy.
We start with an initial guess for n (r) and then solve Eq. (2.267)
to obtain the wave functions ¢; (r). This allows us to determine the
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particle density
N
=L i (0 (2.269)
i=1

and the kinetic energy
hz
2/ i (x ( )wz( Jdr. (2270)

The orbital energies €; have to sum up to the total energy

Zel =Ts[n —l—/ r) Vks (r (2.271)

Unlike for real many-particle orbitals the eigenvalues of the single par-
ticle orbitals have no physical meaning. The sum of them is not the
total energy. The only physical meaning of the single particle wave
functions is that they yield the correct density.

Until here, density functional theory is describing a many-body
quantum system in an exact way. However, for the computation of
the exchange-correlation term Ey. [n] = E [n] + E. [1n] approximations
have to be made. Under the assumption of a homogeneous electron
gas the exchange energy in the local-density approximation (LDA) is

1/3
ELDPA [] = —Z <3> /n (r)4/3 dr. (2.272)

7T

In the case of the correlation energy

EEPM ) = [ e [n ()] dr (227)

no analytical expression is known for €. [n (r)]. LDA has been applied
for calculations of band structures and the calculation of the total en-
ergy in solid-state physics. In quantum chemistry it has been much
less popular since chemical bonds need more accurate results.

It is possible to improve the LDA by adding a dependence on the
gradient of the density. This approach is called General Gradient Ap-
proximation (GGA). The physical intuition for this correction is that
quantum mechanical effects are very strong when there is a change in
the slope of the wave function and in particular when two identical
fermions come closer. Due to the Pauli exclusion principle, there are
no classical effects which are stronger if the particles are close. The
GGA approximation of the exchange energy is

ESSA ] = [ exfn (x), [V (x) ) dr. (2.274)
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One possibility of a GGA approximation of the exchange energy is

EXGGA [Tl] = E%DA :B/ 1’14/3 (2‘275)

where B is a parameter. In addition, Axel Becke suggested another
approach [50]
x2

EBecke [, _ FLDA 1 _ /n4/3 dr 2.276
e =BT = p 1+ 6Bxsinh ! (x) (2276)

with x = |Vn| /n*3 and B = 0.0042.

The corresponding paper is one of the most cited works in mod-
ern science. It shows that DFT is a very important topic in different
subject and with many possible applications. The approximation by
Axel Becke is empirically obtained and not derived analytically. GGA
gives much better results than LDA. They can be used to calculate all
kinds of chemical bonds like covalent, ionic, metallic, and hydrogen
bridges. However DFT using GGA fails to describe van-der-Waals in-
teractions properly. A possible improvement has been suggested by
Grimme [51]. This leads to an additional energy term

Ty !

Eg; —56 fd (Rij)  with  famp (Rij) = ,

isp = 786 = mp mp (7) =  a(Ry )
(2.277)

where s, Cg , R; and d are parameters and Rjj is the distance between
two ions.

2.11.6 Hellmann-Feynman Theorem

With the previous methods we are able to describe the motion of elec-
trons in the potential of the (slower) moving nucleus. After a suffi-
ciently small time step, we also have to update its position. Given a
Hamiltonian operator H of the system, the forces acting on the ions
are (Hellmann-Feynman Theorem)

d’R, oH
el == (3] ¥): 2270

where m, and R, are the mass and position of ion «.

Combining DFT approaches with the Hellmann-Feynman theorem
yields an iterative method for solving the motion of molecules and
other quantum-mechanical systems according to the following steps:

¢ Solve the electron dynamics in the ion potential.

¢ Solve the motion of the ions using classical MD techniques in com-
bination with the Hellmann-Feynman theorem.
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The problem of this method is that the first step is computationally
very expensive. For this reason, the contribution of Car and Parrinello
has been very important.

2.11.7 Car-Parrinello Method

Car and Parrinello reformulated the ab-initio MD problem in terms of
the Hamiltonian [52]

Hep [{Re} (R} (91} ()] = =58+ 25 g

+ Exs ({R1}, {$i}) + Eion ({R1}),
(2.279)

where Mj, R, ¢ are the masses and positions of the nuclei, and the or-
bital wave functions, respectively. The parameter y is a fictitious mass
which is used to limit the energy transfer from nuclei to electrons. The
remaining terms are the Kohn-Sham energy Exs and the ion-ion inter-
action energy Ejon. The Kohn-Sham energy is the sum of the kinetic
energy of Eq. (2.270) and the potential energy of Eq. (2.268).

The corresponding equations of motion are

MR; = —Vg,Exs + ZAijVR, (Wilp;),
ij
.280)
éEKS ‘SEion (22
N * - * + Ai; rlt .
57 (r,6) o9 (r,b) ; i (5, 1)

pp; (r,t) =

The additional Lagrange multiplier A;; is used to ensure orthonormal-
ity of wave functions.

Similar to the Nosé-Hoover approach, we regard ions and electrons
as two different systems coupled by the Hamiltonian as defined in
Eq. (2.279). The coupling is realized with a fictitious mass y which
should not be confused with the electron mass. The fictious mass is
a tunable parameter of the method describing how stiff the electron
motion is coupled to the nuclei. If 4 — 0, the electronic response is
very rapid and the electrons remain to a sufficiently high degree in the
ground state. But numerically we want to avoid too large accelerations.
So electron dynamics is made artificially slower than reality. Since
the electron configuration is now following an equation of motion,
the integration step has to be small enough to resolve the electronic
motion. Since y is usually smaller than the mass of the ions, the CP
time steps are usually smaller than the time steps of the direct Born-
Oppenheimer approach. Often time steps of the order of a tenth of a
femtosecond are used.

Car-Parrinello equations need much less computer time per time
step. But they need smaller time steps. There is still speed gain in real
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time. In addition, the energy-fluctuations are smaller since we always
consider the same bindings. However, it is difficult to simulate light
ions and large values of .
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