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1.1 Introduction

The lecture is divided into two parts. In the first part, we are going to 
cover computational approaches to study phase transitions occurring 
in different statistical physics models including magnetic systems, bi-
nary mixtures or models of opinion formation. However, the range 
of possible applications is much broader. In his book “Phase Transi-
tions”, Ricard V. Solé describes how the study of phase transitions also 
helps to understand many phenomena observable in biological and 
ecological complex systems [1]. However, only for a limited number 
of systems it is possible to derive analytical solutions. For that reason, 
computational methods have become invaluable to obtain further in-
sights where analytical approaches fail. As an application that became 
more relevant recently, we also describe how statistical physics forms 
the basis of many important concepts in the area of machine learning.

The second part focuses on simulation methods of molecular dy-
namics and establishes a connection between the study of the micro-
scopic interactions of particles and their emerging macroscopic prop-
erties that can be analyzed statistically. In particular, we discuss dif-
ferent numerical solution approaches and also introduce methods to 
simulate molecular interactions in an environment of constant tem-
perature. Moreover, we introduce event-driven algorithms as a 
more efficient way to simulate molecular systems and finally 
incorporate quantum mechanical effects in the context of the Car-
Parinello method.

Most of the side notes are intended to provide additional informa-
tion for the interested reader, and to give some relevant examples of 
current research directions. I want to thank Lucas Böttcher for 
providing these lecture notes, which are based on previous efforts to 
summarize the Computational Statistical Physics lecture of Hans J. 
Herrmann. Comments and questions are always welcome and should 
be sent to odedz@ethz.ch.

mailto:lucasb@ethz.ch
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1.2 Classical Statistical Mechanics

Figure 1.1: The importance of statistical
physics: At Dufourstrasse 23 in Zürich
one can find Ludwig Boltzmann’s H-
function. This art installation was cre-
ated by Liam Gillick © Ringier AG.

The field of statistical physics provides methods to study the macro-
scopic properties of a system consisting of interacting microscopic
units. One important example of the achievements of statistical me-
chanics, are the microscopic theories of thermodynamics of Boltzmann
and Gibbs [2, 3].

Our goal is to develop methods which allow us to computationally
study phase transitions emerging in different models. To do so, we
first have to introduce important concepts from classical statistical me-
chanics. In the subsequent sections, we only provide a brief summary
of these concepts. For those interested in a more detailed discussion
of statistical mechanics, we recommend the lectures Theorie der Wärme
and Statistical Physics1. 1 The course Theorie der Wärme is of-

fered every spring semester in the BSc
Physics curriculum and is only taught
in German. Statistical Physics is a MSc
Physics course offered in the autumn
term and taught in English.

In this section, we focus on the treatment of equilibrium systems
which exhibit no time dependence. Keeping certain external parame-
ters constant, the notion of a statistical ensemble enables us to inter-
pret macroscopic physical quantities as averages over a large number
of such systems in different micro states. However, phase transitions
do not only occur in equilibrium systems but also in non-equilibrium
models. In recent years, the study of non-equilibrium dynamics be-
came more and more relevant both theoretically and experimentally.
We therefore briefly discuss methods have to be employed for studying
non-equilibrium phase transitions [4].
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1.2.1 Phase Space

Let us consider a classical physical system with N particles whose
canonical coordinates and the corresponding conjugate momenta are
given by q1, . . . , q3N and p1, . . . , p3N , respectively. The 6N-dimensional
space Γ defined by the last set of coordinates defines the phase space.
This concept has been introduced by Ludwig Boltzmann whose por-
trait is shown in Fig. 1.2. The considered N particles could simply be
uncoupled harmonic oscillators. Then, the phase space of each single
particle would look like the one shown in Fig. 1.3. Keeping certain ex-
ternal parameters such as temperature or pressure constant, we could
measure a macroscopic physical quantity by computing the time av-
erage over different observations of the underlying microscopic states.
Since this would involve a cumbersome treatment of the time evolu-
tion of all microscopic states, another possibility is to replace the time
average by an average over an ensemble of systems in different micro
states under the same macroscopic conditions.

Figure 1.2: Ludwig Boltzmann (1844-
1906) is one of the fathers of statistical
mechanics and formulated one version
of the ergodicity hypothesis.

q

p

Figure 1.3: Phase spaces of an un-
damped (blue) and a damped (orange)
harmonic oscillator.

The assumption that all states in an ensemble are reached by the
time evolution of the corresponding system is referred to as ergodicity
hypothesis. We define the ensemble average of a quantity Q(p, q) as

〈Q〉 =
∫

Q(p, q)ρ(p, q)dpdq∫
ρ(p, q)dpdq

, (1.1)

where ρ (p, q) denotes the phase space density and dpdq is a shorthand
notation for dp3Ndq3N .

1.2.2 Liouville Theorem

The dynamics of the considered N particles is described by their Hamil-
tonian H(p, q), i.e., the equations of motions are

ṗi = −
∂H
∂qi

and q̇i =
∂H
∂pi

(i = 1, . . . , 3N). (1.2)

Moreover, the temporal evolution of a phase space element of volume
V and boundary ∂V is given by

∂

∂t

∫
V

ρ dV +
∫

∂V
ρv dA = 0, (1.3)

where v = ( ṗ1, . . . , ṗ3N , q̇1, . . . , q̇3N) is a generalized velocity vector.
Applying the divergence theorem to Eq. (1.3), we find that ρ satisfies

the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0, (1.4)
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where ∇ = (∂/∂p1, . . . , ∂/∂p3N , ∂/∂q1, . . . , ∂q3N). We can further sim-
plify Eq. (1.4) since

∇ · v =
3N

∑
i=1

(
∂q̇i
∂qi

+
∂ ṗi
∂pi

)
=

3N

∑
i=1

(
∂

∂qi

∂H
∂pi
− ∂

∂pi

∂H
∂qi

)
︸ ︷︷ ︸

=0

= 0. (1.5)

Rewriting Eq. (1.4) using Poisson brackets2 yields Liouville’s Theorem 2 The Poisson bracket is defined as

{u, v} = ∑
i

(
∂u
∂qi

∂v
∂pi
− ∂u

∂pi

∂v
∂qi

)
= −{v, u}.

(1.6)

∂ρ

∂t
= {H, ρ} (1.7)

which describes the time evolution of the phase space density ρ.

1.2.3 Thermal Equilibrium

In thermal equilibrium, the system reaches a steady state in which the
distribution of the configurations is constant and time-independent,
i.e., ∂ρ/∂t = 0. Liouville’s theorem leads to the following condition

v · ∇ρ = {H, ρ} = 0. (1.8)

The last equation is satisfied if ρ depends on quantities which are con-
served during the time evolution of the system. We then use such a
phase space density ρ to replace the time average

〈Q〉 = lim
T→∞

1
T

∫ T

0
Q(p(t), q(t))dt. (1.9)

by its ensemble average as defined by Eq. (1.1).
In the subsequent sections, we also consider discrete configurations

X. In this case, we define the ensemble average as

〈Q〉 = 1
Ω ∑

X
Q(X)ρ(X), (1.10)

where Ω is the normalizing volume such that Ω−1 ∑X ρ(X) = 1. With
the help of ensemble averages, systems can be described by means of
some macroscopic quantities, such as temperature, energy and pres-
sure.

1.2.4 Ensembles

Figure 1.4: Josiah W. Gibbs (1839-1903)
introduced the concept of statistical en-
sembles and derived the laws of thermo-
dynamics from statistical mechanics.

We perform measurements to determine some observable quantities
characterizing a given system while keeping other parameters con-
stant. This agrees well with the idea behind the definition of ensemble
averages, i.e., having a phase space density ρ which only depends on
conserved quantities. However, in general, it is not possible to inde-
pendently adjust the values of all parameters. As an intuitive example,
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we could consider a classical gas. The dynamics is described by per-
fect elastic collisions and therefore it is impossible to compress the
volume by keeping pressure and temperature unchanged. The system
behaves differently depending on which quantities are kept constant.
Some quantities such as volume V and pressure p are conjugate to an-
other. Either V can be held constant or p, not both. Other examples
are energy E and temperature T, particle number N and chemical po-
tential µ, magnetization M and magnetic field H. Depending on the
parameters held constant, the system is described by a

• Microcanonical ensemble: constant E, V, N

• Canonical ensemble: constant T, V, N

• Canonical pressure ensemble: constant T, p, N

• Grandcanonical ensemble: constant T, V, µ

The notion of a physical ensemble has been introduced by Josiah W.
Gibbs who is shown in Fig. 1.4. In the subsequent sections, we consider
microcanonical and canonical systems and therefore also restrict our
discussion of ensembles to these two cases.

1.2.5 Microcanonical Ensemble

The microcanonical ensemble is defined by a constant number of par-
ticles, volume and energy. Thus, any configuration X of the system
has the same energy E (X) = const. The phase space density is also
constant and given by

ρ (X) =
1

Zmc
δ (H (X)− E) , (1.11)

with Zmc being the partition function of the microcanonical ensemble

Zmc = ∑
X

δ (H (X)− E).

1.2.6 Canonical Ensemble

Microcanonical ensembles are difficult to realize experimentally since
every energy exchange with the environment has to be suppressed.
It is more common to deal with systems exhibiting a fixed tempera-
ture T, such as experiments at room temperature. The corresponding
ensemble is called canonical ensemble and shown in Fig. 1.5.

Figure 1.5: In a canonical ensemble
setup, the system we study (system 1)
is coupled to a heat reservoir (system 2)
that guarantees a constant temperature.

At a given temperature T, the probability for a system to be in a
certain configuration X with energy E (X) is given by

ρ (X) =
1

ZT
exp

[
−E (X)

kBT

]
, (1.12)
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with

ZT = ∑
X

exp
[
−E (X)

kBT

]
(1.13)

being the partition function of the canonical ensemble. According to
the prior definition in Eq. (1.10), the ensemble average of a quantity Q
is then given by

〈Q〉 = 1
ZT

∑
X

Q (X) e−
E(X)
kBT . (1.14)

1.3 Ising Model

Due to its historical relevance for the study of phase transitions in
statistical physics and its broad applicability in many other fields, we
now apply the terminology defined in Sec. 1.2 to the Ising model. Wil-
helm Lenz proposed this model to his doctoral student Ernst Ising to
describe systems composed of magnetic dipole moments can be in one
of two states (+1 or −1). The original goal was to describe phase tran-
sitions in magnetic materials. As part of his doctoral thesis in 1924,
Ernst Ising showed that the one-dimensional model exhibits no phase
transition. For that reason, it was expected that this model was of
no particular use. Then in 1949, Lars Onsager published an equation
describing the magnetization in the two-dimensional model. Onsager
provided no proof for his result, but it is known that he derived it using
Toeplitz determinants [5]. A few years passed until a proof has been
established by Yang in 1952 [6]. Since then, the Ising model has been
successfully applied to a large number of physical and non-physical
problems such as magnetic systems, binary mixtures, and models of
opinion formation. Also in comparison with experiments, the Ising
model has been found to generally agree very well with observations
made for certain magnetic materials [7]. To date, no general analytical
solution for the Ising model in three dimensions is known. This is the
reason why this mathematical model has been studied so intensively
from a theoretical and numerical perspective, using tools of statistical
physics some of which we describe in this section.

Figure 1.6: An illustration of the interac-
tion of a magnetic dipole (black) with its
nearest neighbors (dark grey) on a two-
dimensional lattice.

We start our discussion of the properties of the Ising model by con-
sidering a two-dimensional lattice with sites σi ∈ {1,−1} which only
interact with their nearest neighbors as shown in Fig. 1.6. This restric-
tion can be relaxed by letting the sites interact with the next nearest
neighbors or even farther sites. If we think of the variables as con-
figuration of classical spins {σ}, their interaction is described by the
Hamiltonian

H ({σ}) = −J ∑
〈i,j〉

σiσj − H
N

∑
i=1

σi, (1.16)
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where the first term denotes the interaction between all nearest neigh-
bors represented by a sum over 〈i, j〉, and the second one the inter-
action of each site with an external magnetic field H. In the ferro-
magnetic case where J > 0, the energy is lowered (−J) if the spins
are parallel whereas the the energy is increased (+J) if the spins are
anti-parallel. If J < 0, the system is called antiferromagnetic since anti-
aligned spins lead to an energy minimization. No interaction occurs
for J = 0. Considering a ferromagnet, the first term in Eq. (1.16) tries
to create order in the system by minimizing the overall energy as a
consequence of aligning spins in the same direction. The second term
tends to align the spins in the direction of the external field H. While
the energy is lower in an ordered state, thermal fluctuations tend to
destroy the order by flipping single spins. For temperatures above a

Figure 1.7: In the left panel, we show
the magnetization M(T, H) for different
fields H ≥ 0 as a function of T. The
black solid line represents the sponta-
neous magnetization MS(T) for H = 0
and should be interpreted in the sense
that limH → 0+M(T, H). The right
panel illustrates the first-order transition
as a consquence of a sign change of the
external field.

critical value, i.e., T > Tc, such fluctuations dominate the system and
there is no large-scale alignment of spins observable anymore. How-
ever, the domains of aligned spins grow as the temperature decreases
below the critical value. This transition, like any other phase transition
(e.g., for superconductors, superfluids or sol-gel systems) between or-
dered and disordered states, can be characterized by an order parameter.
In the case of the Ising model, the order parameter is the spontaneous
magnetization which undergoes a phase transition of second order3 as 3 Second order phase transitions are con-

tinuous in the order parameter—in the
case of the Ising model, the first deriva-
tive of the free energy with respect to the
magnetic field.

illustrated in Fig. 1.7. The value of the critical temperature depends on
the dimension and the topology of the system. In the case of a two-
dimensional square lattice, the critical temperature (kBTc/J ≈ 2.269)
has been computed analytically by Onsager [8]. First order transitions
also occur in the Ising model as a consequence of a sign change of the
external magnetic field. This behavior is also illustrated in Fig. 1.7.
Crossing the blue first order transition line at H = 0 leads to a jump
in the magnetization.
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1.3.1 Order Parameter

The magnetization is defined as

M (T, H) =

〈
1
N

N

∑
i=1

σi

〉
, (1.17)

and corresponds to the ensemble average of the mean value of all
spins. In the case of a vanishing external field, the Hamiltonian is
invariant under a simultaneous reversal of all spins. In other words,
a certain equilibrated configuration of spins would also be of minimal
energy if we would change the sign of every single spin. Thus, the
ensemble average defined by Eq. (1.17) would not be a good measure
of the magnetization since it corresponds to an ensemble average over
all possible configurations.
On average, M (T) vanishes since for every configuration there exists
one of opposite sign which neutralizes the other one. As a conse-
quence, we define the order parameter of the Ising model as

MS (T) = lim
H→0+

〈
1
N

N

∑
i=1

σi

〉
(1.18)

and refer to it as the spontaneous magnetization. In the definition of
MS (T), the symmetry of the Ising model is broken by applying a van-
ishing positive field H that aligns the spins in one direction. Another
possibility of breaking the symmetry can be realized by keeping the
boundaries of the lattice in a certain state. This is, however, impracti-
cable if periodic boundaries are being used. In Fig. 1.8, we illustrate

Figure 1.8: The formation of magnetic
domains in the Ising model for tempera-
tures T < Tc. For larger temperatures,
the configurations are random due to
thermal fluctuations. The simulations
have been performed on a square lat-
tice with 512 × 512 sites using https:

//mattbierbaum.github.io/ising.js/.

typical domain configurations for different temperatures. If T > Tc,
one observes that thermal fluctuations lead to random configurations.

https://mattbierbaum.github.io/ising.js/
https://mattbierbaum.github.io/ising.js/
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On the other hand, for small enough temperatures magnetic domains
start to form. In the vicinity of the critical temperature for T < Tc, the
spontaneous magnetization scales as

MS(T) ∝ (Tc − T)β . (1.19)

For T = Tc and H → 0, we find the following scaling

M(T = Tc, H) ∝ H1/δ. (1.20)

The exponents β and δ are so-called critical exponents and characterize
together with other exponents the underlying phase transition.

Different techniques such as series expansions, field-theoretic meth-
ods, and very sophisticated Monte Carlo algorithms exist to determine
critical exponents and the critical temperature. The Monte Carlo con-
cepts introduced in this course are a common tool to most precisely
determine these quantities [9].

1.3.2 Fluctuations

The magnetic sucsceptibility is defined as the change of the magneti-
zation M in response to an applied magnetic field H, i.e.,

χ (T) =
∂M (T, H)

∂H
. (1.23)

We now use the definition of the spontaneous magnetization given by
Eq. (1.18) and plug it into Eq. (1.23) leading to

χ (T) = lim
H→0+

∂ 〈M (T, H)〉
∂H

= lim
H→0+

∂

∂H
1
N

∑{σ} ∑N
i=1 σi exp

(
E0+H ∑N

i=1 σi
kBT

)
∑
{σ}

exp

(
E0 + H ∑N

i=1 σi

kBT

)
︸ ︷︷ ︸

=ZT(H)

.

Here we used the definition of the ensemble average given by Eq. (1.14)
with E0 = J ∑〈i,j〉 σiσj and the canonical partition function of the Ising
Hamiltonian ZT (H).
Using the product rule yields

χ (T) = lim
H→0+

1
NkBT

∑{σ}
(

∑N
i=1 σi

)2
exp

(
E0+H ∑N

i=1 σi
kBT

)
ZT (H)︸ ︷︷ ︸−

1
NkBT

[
∑{σ} ∑N

i=1 σi exp
(

E0+H ∑N
i=1 σi

kBT

)]2

[ZT (H)]2︸ ︷︷ ︸
=

N
kBT

〈
MS (T)

2
〉

− N
kBT
〈MS (T)〉2

=
N

kBT

[〈
MS (T)

2
〉
− 〈MS (T)〉2

]
≥ 0.

(1.26)



computational statistical physics 1-12

The last equation defines fluctuation-dissipation theorem for the mag-
netic susceptibility. Analogously, the specific heat is connected to en-
ergy fluctuations since

C(T) =
∂ 〈E〉

∂T
=

1
kBT2

[〈
E (T)2

〉
− 〈E (T)〉2

]
. (1.27)

Eqs. (1.26) and (1.27) describe the variance of magnetization and
energy, respectively. Similarly to the power-law scaling of the spon-

T Tc

χ
(T

)

T Tc
C

(T
)

Figure 1.9: Susceptibility and specific
heat as a function of temperature for
the three dimensional Ising model. Both
quantities diverge at the critical temper-
ature Tc in the thermodynamic limit.

taneous magnetization defined in Eq. (1.19), we find for the magnetic
susceptibility in the vicinity of Tc

χ (T) ∝ |Tc − T|−γ (1.28)

with γ = 7/4 in two dimensions and approximately 1.24 in three di-
mensions. Moreover, the specific heat exhibits the following scaling

C (T) ∝ |Tc − T|−α , (1.29)

where α = 0 in two dimensions4 and numerically known in three di- 4 An exponent of α = 0 corresponds to a
logarithmic decay since

lim
s→0

|x|−s − 1
s

= −ln |x| .

However, in many cases it is difficult to
decide if the exponent is zero or just has
a small value [4].

mensions with α ≈ 0.11. The temperature dependence of susceptibility
and specific heat is illustrated in Fig. 1.9.

1.3.3 Correlation Length

The correlation function is defined by

G(r1, r2; T, H) = 〈σ1σ2〉 − 〈σ1〉 〈σ2〉 , (1.32)

where the vectors r1 and r2 pointing in the direction of lattice sites
1 and 2. If the system is translational and rotational invariant, the
correlation function only depends on r = |r1 − r2|. At the critical point,
the correlation function decays as

G(r; Tc, 0) ∝ r−d+2−η , (1.33)
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where η is another critical exponent and d the dimension of the system.
In two and three dimensions, the value of η is given by 1/4 and 0.036,
respectively. For temperatures away from the critical temperature, the
correlation function exhibits an exponential decay

G(r; T, 0) ∝ r−ϑe−r/ξ , (1.34)

where ξ defines the correlation length. The exponent ϑ equals 2 above
and 1/2 below the transition point. In the vicinity of Tc, the correlation
length ξ diverges since

ξ(T) ∝ |Tc − T|−ν (1.35)

with ν = 1 in two dimensions and ν ≈ 0.63 in three dimensions.

1.3.4 Critical Exponents and Universality

The aforementioned six critical exponents are connected by four scal-
ing laws

α + 2β + γ = 2 (Rushbrooke), (1.41)

γ = β(δ− 1) (Widom), (1.42)

γ = (2− η)ν (Fisher), (1.43)

2− α = dν (Josephson), (1.44)

Figure 1.10: Universal scaling for five
different gases. The scaling variable is
defined as x = ∆T |∆ρ|−1/β and x0 de-
pends on the amplitude B of the power-
law for the coexistence curve ∆ρ =
B∆Tβ [4]. The figure is taken from
Ref. [12].

Table 1.1: The critical exponents of the
Ising model in two and three dimen-
sions [14].

Exponent d = 2 d = 3

α 0 0.110(1)
β 1/8 0.3265(3)
γ 7/4 1.2372(5)
δ 15 4.789(2)
η 1/4 0.0364(5)
ν 1 0.6301(4)

which have been derived in the context of the phenomenological scal-
ing theory for ferromagnetic systems [10, 11]. Due to these relations, 
the number of independent exponents reduces to two. The Josephson 
law includes the spatial dimension d of the system and thus defines 
a hyperscaling relation. Such relations are valid only below the upper 
critical dimension which is equal to dc = 4 for the Ising model.

The importance of critical exponents becomes more clear when we 
study different systems exhibiting phase transitions. Critical control 
parameters such as Tc in the Ising model sensitively depend on the 
interaction details. However, critical exponents only depend on fun-
damental system properties such as dimension or symmetries and are 
therefore said to be universal. Based on these observations, the uni-
versality hypothesis states that different critical phenomena can be 
reduced to a small number of universality classes [13]. All systems be-
longing to a certain universality class share the same critical exponents 
and the same scaling behavior near the critical point.

Universality is not a mere theoretical concept but can also be ob-
served experimentally. In Fig. 1.10, we show an example of five dif-
ferent fluids undergoing a liquid-gas t ransition. All substances exhibit 
different inter-atomic interactions, and still we observe a clear data 
collapse for the rescaled chemical potential.
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1.4 Monte Carlo Methods

Monte Carlo methods are broadly applicable to different problems
which are (i) difficult (or impossible) to solve analytically, or (ii) not
solvable with other numerical techniques due to the large computa-
tional complexity. For example, it may be difficult to numerically sam-
ple the complete phase or parameter space of a certain model. Instead,
we could apply an appropriate random sampling technique to explore
its properties.

In this section, we focus on Monte Carlo algorithms to numerically
study the properties of the Ising model and other Hamiltonian sys-
tems. The basic idea behind the concepts we develop is that randomly
sampling the phase space instead of averaging over all states is suf-
ficient to compute the ensemble average of a certain thermodynamic
quantity. If the number of samples is large enough, the computed
estimate eventually converges towards the real value.

The main steps of the Monte Carlo sampling are

1. Choose randomly a new configuration in phase space based on a
Markov chain.

2. Accept or reject the new configuration, depending on the strategy
used (e.g., Metropolis or Glauber dynamics).

3. Compute the physical quantity and add it to the averaging proce-
dure.

4. Repeat the previous steps.

1.4.1 Markov Chains

Figure 1.11: Example of an energy distri-
bution with a system size L dependence
of the distribution width which scales as
∝
√

Ld where d is the system dimension.

In most cases, a sampling based on equally distributed configura-
tions is very inefficient since the underlying distribution may exhibits
peaks or another form which is not uniform. As an example, we con-
sider the kinetic energy of an ideal gas. The distribution of the mean
energy will be a sharp peak as depicted in Fig. 1.11. There exist many
different methods which avoid unnecessary sampling of regions where
the system is unlikely to be found (importance sampling). A common
way to efficiently choose appropriate samples out of the large pool of
possible configurations, is to explore the phase space using a Markov
chain. We therefore introduce the virtual time τ and note that it only
represents the steps of a stochastic process and should not be confused
with physical time.

In terms of a Markov chain, the transition probability from one state
to another is given by the probability of a new state to be proposed
(T) and the probability of this state to be accepted (A). Specifically,
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T(X → Y) is the probability that a new configuration Y is proposed,
starting from configuration X. For the thermodynamic systems we
consider, the transition probability fulfills three conditions:

1. Ergodicity: any configuration in the phase space must be reachable
within a finite number of steps,

2. Normalization: ∑Y T(X → Y) = 1,

3. Reversibility: T(X → Y) = T(Y → X).

Once a configuration is proposed, we can accept the new config-
uration with probability A(X → Y) or reject it with probability 1−
A(X → Y). The probability of the Markov chain is then given by

W(X → Y) = T(X → Y) · A(X → Y). (1.45)

We denote the probability to find the system in a certain configura-
tion X at virtual time τ by p (X, τ). The master equation describes the
time evolution of p (X, τ) and is given by

dp (X, τ)

dτ
= ∑

Y
p(Y)W(Y → X)−∑

Y
p(X)W(X → Y). (1.46)

A stationary state pst is reached if dp(X,τ)
dτ = 0. The probability of the

Markov chain fulfills the following properties:

1. Ergodicity: any configuration must be reachable: ∀X, Y : W(X →
Y) ≥ 0,

2. Normalization: ∑Y W(X → Y) = 1,

3. Homogeneity: ∑Y pst(Y)W(Y → X) = pst(X).

Note that the condition of reversibility is not required anymore. To
sample the phase space of our system, we have to come up with an
expression for the Markov chain probability W(·). As an example, we
consider a two level system in which one of the two energy levels is
higher (e.g., the electronic shells in an atom): At low energies it would
be unnecessary to equally sample the excited and the ground state of
the electrons. On the contrary, at very high energies the sampling will
have to reflect the higher probability of an electron to be in an excited
state, rather then in the ground state.

To efficiently sample the relevant regions of the phase space, the
probability of the Markov chain W(·) has to depend on the system
properties. To achieve that, we set the stationary distribution pst equal
to the equilibrium distribution of the physical system peq (a real and
measurable distribution):

dp (X, τ)

dτ
= 0⇔ pst

!
= peq. (1.47)
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It then follows from the stationary state condition of the Markov
chain that

∑
Y

peq(Y)W(Y → X) = ∑
Y

peq(X)W(X → Y). (1.48)

A sufficient condition for this to be true is

peq(Y)W(Y → X) = peq(X)W(X → Y), (1.49)

which is referred to as condition of detailed balance.
As an example, in a canonical ensemble at fixed temperature T, the

equilibrium distribution is given by the Boltzmann distribution

peq(X) =
1

ZT
exp

[
−E(X)

kBT

]
(1.50)

with the partition function ZT = ∑X exp
[
− E(X)

kBT

]
.

1.4.2 M(RT)2 Algorithm

Figure 1.12: Nicholas C. Metropolis
(1915-1999) introduced the M(RT)2 sam-
pling technique.

One possible choice of the acceptance probability fulfilling the de-
tailed balance condition is given by

A (X → Y) = min
[

1,
peq (Y)
peq (X)

]
. (1.51)

which can be obtained by rewritting Eq. (1.49). This algorithm has
been developed at Los Alamos National Laboratory in the group of
Nicolas Metropolis whose portray is shown in Fig. 1.12. It is often
referred to as Metropolis or M(RT)2 algorithm5. In the case of the

5 M(RT)2 is an abbreviation of the last
names of the authors of the original pa-
per [15]. RT is squared because except
Metropolis, the other four authors of
the paper formed two married couples
and therefore carried the same family
names. The real contributions of some of
the authors (in particular of Metropolis
and of A.H. Teller) is subject of contro-
versy [16, 17]. It has been even stated by
Roy Glauber and Emilio Segré that the
original algorithm was invented by En-
rico Fermi [18].

canonical ensemble with peq (X) = 1
ZT

exp
[
− E(X)

kBT

]
, the acceptance

probability becomes

A (X → Y) = min
[

1, exp
(
− ∆E

kBT

)]
, (1.52)

where ∆E = E(Y)− E(X). The last equation implies that the Monte
Carlo step is always accepted if the energy decreases, and if the en-

ergy increases, it is accepted with probability exp
(
− ∆E

kBT

)
. Plugging

Eq. (1.51) with the Boltzmann factor peq into Eq. (1.49) shows that
detailed balance is indeed fulfilled. The algorithm has been general-
ized in 1970 [19]. We use the rather general algorithm to explore the
phase space of the Ising model by flipping the values on the mag-
netic monopoles according to the acceptance probability as defined
by Eq. (1.52). In Fig. 1.13, we show the spontaneous magnetization
MS(T) and the energy per spin E(T) of the three-dimensional Ising
model simulated with the M(RT)2 algorithm.

In summary, the steps of the M(RT)2 alogrithm applied to the Ising
model are
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Figure 1.13: We show the spontaneous
magnetization MS(T) and the energy
per spin E(T) of the three-dimensional
Ising model for different temperatures T
and linear system sizes L.

M(RT)2 Algorithm

• Randomly choose a lattice site i,

• Compute ∆E = E(Y)− E(X) = 2Jσihi,

• Flip the spin if ∆E ≤ 0, otherwise accept it with probability

exp
(
− ∆E

kBT

)
,

with hi = ∑〈i,j〉 σj and E = −J ∑〈i,j〉 σiσj. One should bear in mind
that there is only a limited number of possible energy differences in a
lattice. To speed up the simulation, we can therefore create a lookup
table storing possible nearest neighbor combinations. For example hi ∈
{0,±2,±4} in the case of a two dimensional lattice.

1.4.3 Glauber Dynamics (Heat Bath Dynamics)

The Metropolis algorithm is not the only possible choice to fulfill the
detailed balance condition. Another acceptance probability given by

AG (X → Y) =
exp

(
− ∆E

kBT

)
1 + exp

(
− ∆E

kBT

) (1.53)

has been suggested by Glauber.
In contrast to the M(RT)2 acceptance probability, updates with ∆E =

0 are not always accepted but with probability 1/2. This behavior is
illustrated in Fig. 1.14.

To proof that Eq. (1.53) satisfies the condition of detailed balance,
we have to show that

peq(Y)AG(Y → X) = peq(X)AG(X → Y), (1.54)
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Figure 1.14: A comparison of the ac-
ceptance probabilities of M(RT)2 and
Glauber dynamics.since T(Y → X) = T(X → Y). The last equation is equivalent to

peq(Y)
peq(X)

=
AG(X → Y)
AG(Y → X)

(1.55)

which is fulfilled since

peq(Y)
peq(X)

= exp
(
− ∆E

kBT

)
(1.56)

and

AG(X → Y)
AG(Y → X)

=
exp

(
− ∆E

kBT

)
1 + exp

(
− ∆E

kBT

)
 exp

(
∆E
kBT

)
1 + exp

(
∆E
kBT

)
−1

= exp
(
− ∆E

kBT

)
.

(1.57)
As in the M(RT)2 algorithm, only the local configuration around the

lattice site is relevant for the update procedure. Furthermore, with
J = 1, the probability to flip spin σi is

AG(X → Y) =
exp

(
−2σihi

kBT

)
1 + exp

(
−2σihi

kBT

) (1.58)

with hi = ∑〈i,j〉 σj being the local field and X = {. . . , σi−1, σi, σi+1, . . . }
and Y = {. . . , σi−1, −σi, σi+1, . . . } the initial and final configuration, 
respectively. We abbreviate the probability defined by Eq. (1.58) when 
the spin at position i point down as pi. The spin flip and no flip 
probabilities can then be expressed as

pflip =

pi for σi = −1

1− pi for σi = +1
and pno flip =

1− pi for σi = −1

pi for σi = +1
(1.59)

A possible implementation is

σi(τ + 1) = −σi(τ) · sign(pi − z), (1.60)
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with z ∈ (0, 1) being a uniformly distributed random number, or

σi(τ+ 1) =

+1 with propability pi

−1 with propability 1− pi
and pi =

exp (2βhi)

1 + exp (2βhi)
.

(1.61)
This method does not depend on the spin value at time t and is called
heat bath Monte Carlo.

1.4.4 Binary Mixtures and Kawasaki Dynamics

We now consider a system of two species A and B (spin up and
spin down particles, two different gas molecules, etc.) which are dis-
tributed with given concentrations on the sites of a lattice. For ex-
ample, these two species could represent two sorts of metallic atoms
whose numbers are conserved. An illustration of such a system is
shown in Fig. 1.15. We model such a mixture by defining

Figure 1.15: An example of a binary mix-
ture consisting of two different atoms A
and B.

• EAA as the energy of an A− A bond,

• EBB as the energy of a B− B bond,

• EAB as the energy of an A− B bond.

We set EAA = EBB = 0 and EAB = 1. The Kawasaki dynamics cor-
responds to a M(RT)2 or Glauber algorithm with constant numbers of
spins in each population. The update algorithm is as follows:

Kawasaki dynamics

• Choose a A− B bond,

• Compute ∆E for A− B→ B− A,

• Metropolis: If ∆E ≤ 0 flip, else flip with probability

p = exp
(−∆E

kBT

)
,

• Glauber: Flip with probability

p = exp
(
− ∆E

kBT

)
/
[

1 + exp
(
− ∆E

kBT

)]
.

This procedure is very similar to the previously discussed update
schemes. The only difference is that the magnetization is kept constant.

1.4.5 Creutz Algorithm

Until now, we only considered canonical Monte Carlo algorithms
for simulating systems at constant temperature. In 1983, Creutz sug-
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gested a method to perform microcanonical Monte Carlo simulations
of systems at constant energy [20]. The algorithm is often referred to
as Creutz algorithm. In fact, the condition of energy conservation is
slightly relaxed in this algorithm and energy is not fully conserved.
The movement in phase space is therefore not strictly constrained to
a subspace of constant energy but there is a certain additional volume
in which we can freely move. The condition of constant energy is soft-
ened by introducing a so-called demon which corresponds to a small
reservoir of energy ED that can store a certain maximum energy Emax.

Figure 1.16: The distribution of the de-
mon energy ED is exponentially dis-
tributed. Based on the Boltzmann factor,
it is possible to extract the inverse tem-
perature β = (kBT)−1 = 2.25. The figure
is taken from Ref. [20].

The Creutz algorithm is defined by the following steps:

Creutz Algorithm

• Choose a site,

• Compute ∆E for the spin flip,

• Accept the change if Emax ≥ ED − ∆E ≥ 0.

Besides the fact that we can randomly choose a site, this method
involves no random numbers and is thus said to be deterministic and
therefore reversible. The drawback of this method is that the tempera-
ture of the system is not known.

It is, however, possible to estimate the temperature with the Boltz-
mann distribution. By plotting a histogram of the energies ED one

observes a distribution P(ED) ∝ exp
(
− ED

kBT

)
. We show an example

of a distribution P(ED) in Fig. 1.16. The fit is not optimal due to the
small number of different values of ED. The larger Emax, the faster
the method since the condition of constant energy is relaxed and the
exploration of phase space is less restricted to certain regions.

1.4.6 Q2R

In the case of Emax → 0, the Creutz algorithm resembles a totalistic
cellular automaton called Q2R [21]. The update rules on a square
lattice for spins σij ∈ {0, 1} are given by

σij(τ + 1) = f (xij)⊕ σij(τ) (1.62)

with

xij = σi−1j + σi+1j + σij−1 + σij+1 and f (x) =

1 if x = 2

0 if x 6= 2
. (1.63)

In this case, the spins are flipped if and only if the change in energy is
zero. This can be implemented in a very efficient way using multi spin
coding, cf. Sec. 1.10.1. The update rule of Eq. (1.62) can be expressed
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in a very elegant way using logical functions

σ(τ + 1) = σ(τ)⊕ {[(σ1 ⊕ σ2) ∧ (σ3 ⊕ σ4)] ∨ [(σ1 ⊕ σ3) ∧ (σ2 ⊕ σ4)]} .
(1.64)

This logical expression can be computed in roughly 12 cycles which
last typically around 10 ns. The method is extremely fast, deterministic
and reversible. The problem is that it is not ergodic and that it strongly
depends on the initial configuration. As an example, try to imagine
the evolution of a small lattice, in which only σ2,1 and σ1,2 are equal
to unity. In fact, this method is not used in statistical physics but it is
useful for other purposes, e.g., neuroinformatics or cellular automata.

1.4.7 Boundary Conditions

Computer simulations are always restricted to finite domains. There-
fore, one of the finite size effects one has to take into account is the
effect of boundaries of the considered domain. The values there can
be set to a certain value or periodic boundaries can be introduced. In
some situations certain boundary condition also correspond to a real
physical situation. As an example, we can think of some zero potential
boundary condition while solving the Laplace equation in electrostat-
ics using finite difference methods. There are more effects related to
systems of finite size which we describe in more detail in Sec. 1.5. For
finite lattices, the following boundary conditions may be used:

• Open boundaries, i.e., no neighbors at the edges of the system,

• fixed boundary conditions,

• and periodic boundaries.

If our system is large enough6, it is possible to connect the edges 6 In this context, large is not a purely ar-
bitrary concept but it depends on what
we want to simulate. A good measure
of large can be that the edges of the sys-
tem are uncorrelated. It is clear that this
method is useless in small lattices.

of the lattice. Identifying the last element of a row (or column) with
the first element of the next row (or column) leads to so called helical
boundary condition.

1.4.8 Temporal Correlations

Each time we accept a spin-flip in our sampling chain, a new con-
figuration is generated. The problem is that both new and previous
configurations are strongly correlated. As a consequence, we can ex-
pect that the error scaling of our Monte Carlo method with ∝ 1/

√
N,

where N is the number of sampled configurations, is no longer valid.
We thus have to find a measure which tells us whether we are already
in equilibrium or not, and which enables us to sample uncorrelated
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configurations. According to the definition of a Markov chain, the
dependence of a quantity A on virtual time τ is given by

〈A(τ)〉 = ∑
X

p (X, τ) A (X) = ∑
X

p (X, τ0) A (X(τ)). (1.65)

In the second step of the last equation, we used the fact that the average
is taken over an ensemble of initial configurations X(τ0) which evolve
according to Eq. (1.46) [22]. For some τ0 < τ, the non-linear correlation
function

Φnl
A (τ) =

〈A(τ)〉 − 〈A(∞)〉
〈A(τ0)〉 − 〈A(∞)〉 (1.66)

is a measure to quantify the deviation of A(τ) from A(∞) relative to
the deviation of A(τ0) from A(∞). In a simulation, we would consider
a large value of τ to define A(∞). If A(τ0) is already equilibrated, we
would expect that Φnl

A (τ) = 1. Strictly speaking, Eq. (1.66) is not a cor-
relation function, but it can be a measure to investigate the correlation
of configurations.

The non-linear correlation time τnl
A describes the relaxation towards

equilibrium and is defined as7 7 If we consider an exponential decay of
Φnl

A (τ), we find that this definition is
meaningful since

∞∫
0

exp
(
−τ/τnl

A

)
dτ = τnl

A . (1.67)

τnl
A =

∞∫
0

Φnl
A (τ)dτ. (1.68)

In the vicinity of the critical temperature Tc, we observe the so-called
critical slowing down of our dynamics, i.e., the non-linear correlation
time is described by power law

τnl
A ∝ |T − Tc|−znl

A (1.69)

with znl
A being the non-linear dynamical critical exponent. This is very

bad news, because the last equation implies that the time needed to
reach equilibrium diverges at Tc. The linear correlation function of
two quantities A and B in equilibrium is defined as

ΦAB (τ) =
〈A(τ0)B(τ)〉 − 〈A〉 〈B〉
〈AB〉 − 〈A〉 〈B〉 (1.70)

with
〈A (τ0) B (τ)〉 = ∑

X
p (X, τ0) A (X (τ0)) B (X (τ)).

As τ goes to infinity, ΦAB (τ) decreases from unity to zero. If
A = B, we call Eq. (1.70) the autocorrelation function. For the spin-spin
correlation in the Ising model we obtain

Φσ (τ) =
〈σ(τ0)σ(τ)〉 − 〈σ(τ0)〉2

〈σ2(τ0)〉 − 〈σ(τ0)〉2
. (1.71)
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The linear correlation time τAB describes the relaxation in equilib-
rium

τAB =

∞∫
0

ΦAB (τ)dτ. (1.72)

As in the case of the non-linear correlation time, in the vicinity of
Tc, we observe a critical slowing down, i.e.,

τAB ∝ |T − Tc|−zA . (1.73)

with zA being the linear dynamical critical exponent.
The dynamical exponents for spin correlations turn out to be

zσ = 2.16 (2D), (1.74)

zσ = 2.09 (3D). (1.75)

There is a conjectured relation between the Ising critical exponents
and the critical dynamical exponents for spin σ and energy correlations
E. The relations

zσ − znl
σ = β, (1.76)

zE − znl
E = 1− α, (1.77)

are numerically well-established, however, not yet analytically proven.

1.4.9 Decorrelated Configurations

The correlation behavior described in the previous Sec. 1.4.8 is only
valid in the case of an infinite lattice. The correlation length diverges
at Tc according to Eq. (1.35). In a finite system, however, we cannot
observe a quantity diverging towards infinity—the correlation length
ξ approaches the system size L at Tc. This behavior is illustrated in
Fig. 1.17. Connecting this behavior with the one observed for the
correlation time described by Eq. (1.72) yields

τAB ∝ |T − Tc|−zAB ∝ L
zAB

ν . (1.78)

Figure 1.17: The correlation length di-
verges in an infinite system at Tc accord-
ing to Eq. (1.35). In a finite system, how-
ever, we observe a round off and the cor-
relation length approaches the system
size L at Tc.

The last equation implies that the number of samples which have to be
discarded increases with system size. This is a problem when studying
large system sizes, because the computation may take very long. To
ensure not to sample correlated configurations one should

• first reach equilibrium (discard n0 = cτnl(T) configurations),

• only sample every nth
e = cτ(T) configuration,
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• and at Tc use n0 = cL
znl
ν and ne = cL

z
ν

where c ≈ 3 is a "safety factor" to make sure to discard enough sam-
ples. A trick for reducing this effect is using cluster algorithms which
we introduce in Sec. 1.6.

1.5 Finite Size Methods
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Figure 1.18: The system size dependence
of the susceptibility and the correspond-
ing finite size scaling. The data is based
on a simulation of the Ising model on
a cubic lattice for different linear sys-
tem sizes L. The number of samples is
25× 103 which have been generated with
the Wolf algorithm. The error bars are
smaller than the markers.

In the Ising model, spins tend to form clusters and spatial corre-
lations emerge in addition to the temporal correlations discussed in
Sec. 1.4.8. In particular, we introduced the concepts of correlation
function and correlation length in Sec. 1.3.3. We described that the
correlation function decays exponentially with distance and that the
correlation length (finite system size) defines a characteristic length
scale. According to Eq. (1.35), the correlation length diverges with an
exponent of −ν at Tc. Moreover, susceptibility and heat capacitance
also exhibit divergent behavior at Tc as described by Eqs. (1.28) and
(1.29). The larger the system size, the more pronounced is the diver-
gence.

In finite systems, we cannot observe a divergence towards infinity
but a peak of some finite value. The value of the susceptibility peak
scales with L

γ
ν while the critical region shrinks as L−

1
ν . If we rescale the

values for different system sizes accordingly, we obtain a data collapse,
i.e., all the values fall onto a single curve. This can be used to compute
critical exponents.

The finite size scaling relation of the susceptibility is given by

χ (T, L) = L
γ
ν Fχ

[
(T − Tc) L

1
ν

]
, (1.80)

where Fχ is called susceptibility scaling function8. We see an example 8 Based on Eq. (1.28), we can infer that

Fχ

[
(T − Tc) L

1
ν

]
∝
(
|T − Tc| L

1
ν

)−γ
as

L→ ∞.
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of a finite size scaling data collapse of the susceptibility in Fig. 1.18.
In the case of the magnetization, the corresponding finite size scal-

ing relation is

MS (T, L) = L−
β
ν FMS

[
(T − Tc) L

1
ν

]
. (1.81)

1.5.1 Binder Cumulant

Figure 1.19: The distribution P(M) of
the magnetization M above a below the
critical temperature Tc.

In the previous section, we have outlined that the finite size scaling re-
lation of the susceptibility according to Eq. (1.80) constitutes a method
to determine critical exponents. However, we still need a way to deter-
mine the critical temperature more precisely than with a mere observa-
tion of the initial growth of the spontaneous magnetization as shown
in Fig. 1.7. To overcome this hurdle, we make use of the so-called
Binder cumulant

UL(T) = 1−
〈

M4〉
L

3 〈M2〉2L
, (1.84)

which is independent of the system size L at Tc since

〈
M4〉

L

3 〈M2〉2L
=

L−
4β
ν FM4

[
(T − Tc) L

1
ν

]
{

L−
2β
ν FM2

[
(T − Tc) L

1
ν

]}2 = FC

[
(T − Tc) L

1
ν

]
. (1.85)

At the critical temperature (T = Tc), the scaling function FC, which is
nothing but the ratio of two other scaling functions, is a system size
independent constant. As shown in the left panel of Fig. 1.21, for
T > Tc, the magnetization is described by a Gaussian distribution

PL (M) =

√
Ld

πσL
exp

[
−M2Ld

σL

]
, (1.88)
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with σL = kBT2χL. Since the fourth moment equals three times the
second moment squared, i.e.,〈

M4
〉

L
= 3

〈
M2
〉2

L
, (1.89)

it follows that UL(T) must be zero for T > Tc.
Below the critical temperature (T < Tc), there exist one ground

state with positive and one with negative magnetization and the cor-
responding distribution is given by

PL (M) =
1
2

√
Ld

πσl

{
exp

[
− (M−MS)

2 Ld

σL

]
+ exp

[
− (M + MS)

2 Ld

σL

]}
,

(1.91)
as illustrated in the right panel of Fig. 1.21.
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Figure 1.20: The temperature depen-
dence of the Binder cumulant in the
three dimensional Ising model for differ-
ent sizes.

For this distribution, it holds that
〈

M4〉
L =

〈
M2〉2

L and therefore
UL(T) = 2

3 for T < Tc. In summary, we demonstrated that

UL(T) =


2
3 for T < Tc

const. for T = Tc

0 for T > Tc

(1.92)

The behavior of the Binder cumulant according to Eq. (1.92) is shown
in Fig. 1.20 for the three dimensional Ising model and different system
sizes. With Eq. (1.92), we have found a very efficient way to calcu-
late the critical temperature based on the temperature sensitive Binder
cumulant UL. For infinite systems, the cumulant exhibits a jump at
Tc. All our discussions related to the behavior of different thermo-
dynamic quantities at the critical temperature assumed a pure power
law behavior as, for example, the one in Eqs. (1.19), (1.28) and (1.29).
However, we would observe such a power law dependence only for
temperature values very close to the critical temperature. Far away
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from Tc we cannot observe a clear power law behavior anymore, and
corrections to scaling have to be employed, i.e.,

M (T) = A0 (Tc − T)β + A1 (Tc − T)β1 + . . . , (1.93)

ξ (T) = C0 (Tc − T)−ν + C1 (Tc − T)−ν1 + . . . , (1.94)

with β1 > β and ν1 < ν. These corrections are very important
for high quality data, where the errors are small and the deviations
become visible. The scaling functions must also be generalized as

M (T, L) = L−
β
ν FM

[
(T − Tc) L

1
ν

]
+ L−xF1

M

[
(T − Tc) L

1
ν

]
+ . . . (1.95)

with x = max
[

β1
ν , β

ν1
, β

ν − 1
]
.

1.5.2 First Order Transition

Figure 1.21: The magnetization exhibits
a switching behavior if the field van-
ishes. For non-zero magnetic fields, the
magnetization is driven in the direction
of the field. The figure is taken from
Ref. [23].

Until now, we only focused on the temperature dependence of thermo-
dynamic quantities in the context of the second order phase transition
of the Ising model, which is characterized by a discontinuity in the
second derivative of the free energy F = −kBT ln (Z) (e.g., the suscep-
tibility at the critical temperature). In general, phase transitions are
characterized by their order which refers to the nth derivative of the
free energy not being continuous. In particular, a nth order phase transi-
tions is defined by the lowest non-continuous derivative being of order
n. For T < Tc, the Ising model exhibits a jump in the magnetization at
H = 0 which is proportional to the first derivative of the free energy.
This leads to a jump in the susceptibility at H = 0.

Binder showed that the magnetization as a function of the field H
is described by tanh

(
αLd

)
if the distribution of the magnetization is
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given by Eq. (1.91) [23]. Specifically, we find for the magnetization and
susceptibility

M(H) = χD
L H + MLtanh

(
βHMLLd

)
, (1.96)

χL (H) =
∂M
∂H

= χD
L +

βMLLd

cosh2 (βHMLLd
) . (1.97)

Similarly, to the scaling of a second order transition, we can scale
the maximum of the susceptibility (χL (H = 0) ∝ Ld) and the width of
the peak (∆χL ∝ L−d). To summarize, a first order phase transition is
characterized by

1. A bimodal distribution of the order parameter,

2. stochastic switching between the two states in small systems,

3. hysteresis of the order parameter when changing the field,

4. a scaling of the order parameter, or response function according to
Eq. (1.97).

1.6 Cluster Algorithms

Based on our discussion in Secs. 1.4.8 and 1.4.9, we have learned that
large system sizes lead to longer simulation times—in particular in the
vicinity of Tc. All algorithms we considered so far are based on single
spin flips only. As a consequence of this update scheme and the criti-
cal slowing down, we have to wait sufficiently long between adding a
thermodynamic quantity to our averaging procedure to obtain statisti-
cally independent samples. The aim of cluster algorithms is to reduce
the computation time by flipping multiple spins at the same time. It is
essential that the group of spins to flip is chosen with a small accep-
tance probability. To do this, we will generalize the Ising model and
adapt this generalization to our needs.

1.6.1 Potts Model

The Potts model is a generalization of the Ising model to a model with
q ≥ 2 states. It is a very versatile model due to its applications in many
fields including sociology, biology and material science.

The Hamiltonian of the system is defined as

H = −J ∑
〈i,j〉

δσiσj − H ∑
i

σi, (1.98)

where σi ∈ {1, ..., q} and δσiσj is unity when nodes i and j are in the
same state. The Potts model exhibits a first order transition at the crit-
ical temperature in two dimensions for q > 4, and for q > 2 for di-
mensions larger than two. For q = 2, the Potts model is equivalent
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to the Ising model. Moreover, there exists a connection between the
Potts model and the well known bond percolation model. Kasteleyn
and Fortuin demonstrated that the two models have related partition
functions [24].

Any thermodynamic system is characterized by its partition func-
tion from which all thermodynamic quantities can be derived. There-
fore, the partition function completely describes a given thermody-
namic system. If two systems have exactly the same partition function,
those two systems are equivalent. Using this knowledge, we will prove
a relation between the Potts model and bond percolation in the follow-
ing section.

1.6.2 The Kasteleyn and Fortuin Theorem

We consider the Potts model not on a square lattice but on an arbi-
trary graph of nodes connected with bonds ν. Each node has q possible
states and each connection leads to an energy cost of unity if two con-
nected nodes are in a different state and of zero if they are in the same
state, i.e.,

E = J ∑
ν

εν with εν =

0 if endpoints are in the same state

1 otherwise
(1.99)

Figure 1.22: Contraction and deletion on
a graph.

As depicted in Fig. 1.22, we also account for contraction and deletion
operations on the graph. If two sites are in the same state, they can be
merged (contraction) or simply be removed (deletion).

The partition function is the sum over all possible configurations
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weighted by the Boltzmann factor and thus given by

Z = ∑
X

e−βE(X) (1.99)
= ∑

X
e−βJ ∑ν εν = ∑

X
∏

ν

e−βJεν . (1.100)

We now consider a graph where bond ν1 connects two nodes i and
j with states σi and σj, respectively. If we would delete bond ν1, the
partition function is

ZD = ∑
X

∏
ν 6=ν1

e−βJεν . (1.101)

We can thus rewrite Eq. (1.100) as

Z = ∑
X

e−βJεν1 ∏
ν 6=ν1

e−βJεν

= ∑
X:σi=σj

∏
ν 6=ν1

e−βJεν + e−βJ ∑
X:σi 6=σj

∏
ν 6=ν1

e−βJεν ,

where the first part is the partition function of the contracted graph
ZC and the second part is given by the identity

∑
X:σi 6=σj

∏
ν 6=ν1

e−βJεν = ∑
X

∏
ν 6=ν1

e−βJεν − ∑
X:σi=σj

∏
ν 6=ν1

e−βJεν = ZD − ZC.

(1.102)

Summarizing the last results, we find

Z = ZC + e−βJ (ZD − ZC) = pZC + (1− p)ZD, (1.103)

where p = 1− e−βJ . To be more precise, we expressed the partition
function Z as the contracted and deleted partition functions at bond
ν1. We apply the last procedure to another bond ν2 and find

Z = p2ZCν1 ,Cν2
+ p(1− p)ZCν1 ,Dν2

+(1− p)pZDν1 ,Cν2
+(1− p)2ZDν1 ,Dν2

.
(1.104)

After applying these operations to every bond, the graph is reduced
to a set of separated points corresponding to clusters of nodes which
are connected and in the same state out of q states. The partition
function reduces to

Z = ∑
configurations of
bond percolation

q# of clusters pc (1− p)d =
〈

q# of clusters
〉

b
, (1.105)

where c and d are the numbers of contracted and deleted bonds re-
spectively. In the limit of q → 1, one obtains the partition function
of bond percolation9. We found a fundamental relation between a 9 In bond percolation, an edge of a graph

is occupied with probability p and va-
cant with probability 1− p.

purely geometrical model (bond percolation) and a magnetic model
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described by a Hamiltonian (Potts model) [25]. Interestingly, we can
now choose non-integer values for q. This was meaningless in the orig-
inal definition of the Potts model since q was introduced as the state
of each site.

1.6.3 Coniglio-Klein Clusters

We should bear in mind that the equivalence between bond percolation
and the Potts model is of statistical nature since a particular bond
configuration may correspond to several spin configurations and vice
versa. The fact that the actual spin values are absent in Eq. (1.105)
forms the basis for cluster algorithms.

The probability of a given cluster C to be in a certain state σ0 is
independent of the state itself, i.e.,

p(C, σ0) = pcC (1− p)dC ∑
bond percolation
without cluster C

q# of clusters pc (1− p)d. (1.106)

This implies that flipping this particular cluster has no effect on the
partition function (and therefore the energy) so that it is possible to
accept the flip with probability one. This can be seen by looking at the
detailed balance condition of the system

p(C, σ1)W [(C, σ1)→ (C, σ2)] = p(C, σ2)W [(C, σ2)→ (C, σ1)] (1.107)

and using p(C, σ1) = p(C, σ2).
We then obtain for the acceptance probabilities

A [(C, σ2)→ (C, σ1)] = min
[

1,
p(C, σ2)

p(C, σ1)

]
= 1 M(RT)2,

A [(C, σ2)→ (C, σ1)] =
p(C, σ2)

p(C, σ1) + p(C, σ2)
=

1
2

Glauber.
(1.108)

Based on these insights, we introduce cluster algorithms which are
much faster than single-spin flip algorithms and less prone to the prob-
lem of critical slowing down.

1.6.4 Swendsen-Wang Algorithm

The Swendsen-Wang algorithm is a refined Monte Carlo technique
which uses the advantage of updating whole clusters of spins. For
a certain configuration, we iterate over all bonds connecting spins.
Whenever two bonded sites are in the same state, the two sites belong
to the same cluster with probability p = 1− e−βJ . Once the clusters
are determined, they can be flipped using any of the updating schemes
mentioned before. The basic procedure is as follows:
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Swendsen-Wang algorithm

• Occupy the bonds with probability p = 1− e−βJ if sites are
in the same state.

• Identify the clusters with the Hoshen-Kopelman algorithm.

• Flip the clusters with probability 1/2 for Ising or always
choose a new state for q > 2.

• Repeat the procedure.

1.6.5 Wolff Algorithm

The Wolff algorithm uses a recursive method to identify clusters and
is based on the following steps:

Wolff algorithm

• Choose a site randomly.

• If the neighboring sites are in the same state, add them to
the cluster with probability p = 1− e−βJ .

• Repeat this for any site on the boundaries of the cluster, until
all the bonds of the cluster have been checked exactly once.

• Choose a new state for the cluster.

• Repeat the procedure.

1.6.6 Other Ising-like Models

Before focusing on further simulation methods, we briefly discuss
other generalizations of the Ising model. The Potts model is only one
example of a related physical system. In fact, there exists a large num-
ber of models which are modified versions of the Ising model to de-
scribe related physical phenomena such as antiferromagnetism, spin
glasses or metamagnetism. One of the possible generalizations of the
Ising model is the so called n-vector model. Unlike the Potts model, it
describes spins as vectors with n components. This model has appli-
cations in modeling magnetism or the Higgs mechanism.

The Hamiltonian resembles the one of the Potts model in the sense
that it favors spin alignment

H = −J ∑
〈i,j〉

~Si · ~Sj + ~H ∑
i

~Si. (1.109)
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with ~Si =
(
S1

i , S2
i , . . . , Sn

i
)

and
∣∣∣~Si

∣∣∣ = 1. For n = 1 we obtain the Ising
model, the case where n = 2 corresponds to the XY-model, for n = 3 we
find the Heisenberg model and finally, for n = ∞ resembles the spherical
model. Note that the models for various values of n are not equivalent.

Figure 1.23: The dependence of the criti-
cal temperature on the number of vector
components n.

In fact, there are huge differences. As an example, the XY-model does
not exhibit a phase transition for a non-zero critical temperature from
an ordered to a disordered state in two dimensions. The proof of this
statement can be found in Ref. [26], and it is known as the Mermin-
Wagner theorem. Ernst Ising himself proved in his doctoral thesis
that the one dimensional Ising model also does not exhibit a phase
transition for Tc > 0. In three dimensions, however, both the XY and
the Heisenberg model exhibit a phase transition for a non-zero Tc. We
summarized these results in Fig. 1.23. The scaling behavior of these
models close the critical temperature is very similar to the behavior of
the Ising model.

For Monte Carlo simulations with vector-valued spins we have to
adapt our simulation methods. The classical strategy is to flip spins
by modifying the spin locally trough adding a small ∆~S such that ~S′i =
~Si + ∆~S and ∆~S ⊥ ~Si. The classical Metropolis algorithm can then be
used in the same fashion as in the Ising model.

In order to use cluster methods one can project a group of spins
onto a plane, and then reflect the spins with respect to the plane. In
order to use cluster algorithms one has to find a method to identify
equal spins. The probability to find equal spins in a vector-valued
model becomes very small one can therefore consider a certain range
of values instead.

1.7 Histogram Methods

For computing the thermal average defined by Eq. (1.14), we need
to sample different configurations at different temperatures. Another
possibility would be to determine an average at a certain tempera-
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ture T0 and extrapolate to another temperature T. In the case of a
canonical ensemble, an extrapolation can be achieved by reweighing
the histogram of energies pT0(E) with the Boltzmann factor exp(E/T−
E/T0). Such histogram methods have first been described in Ref. [27].
We now reformulate the computation of the thermal average of a quan-
tity Q and of the partition function as a sum over all possible energies
instead of over all possible configurations and find

Q (T0) =
1

ZT0
∑
E

Q (E) pT0 (E) with ZT0 = ∑
E

pT0 (E), (1.110)

where pT0 (E) = g (E) e−
E

kBT0 with g (E) defining the degeneracy of states,
i.e., the number of states with energy E. This takes into account the
fact that multiple configurations can have the same energy. The goal
is to compute the quantity Q at another temperature T

Q (T) =
1

ZT
∑
E

Q (E) pT (E). (1.111)

The degeneracy of states contains all the information needed. Using
the definition of g (E) yields

pT (E) = g (E) e−
E

kBT = pT0 (E) exp
[
− E

kBT
+

E
kBT0

]
(1.112)

and with fT0,T (E) = exp
[
− E

kBT + E
kBT0

]
we finally obtain

Q (T) =
∑E Q (E) pT0 (E) fT0,T (E)

∑E pT0 (E) fT0,T (E)
. (1.113)

Figure 1.24: An example of the his-
togram and the broad histogram method
for different system sizes. The figure is
taken from Ref. [28].

With Eq. (1.113) we found a way to compute the value of a quantity
Q at any temperature T based on a sampling at a certain temperature
T0. The drawback of this method is that the values of Q (E) are sam-
pled around the maximum of pT (E), which converges to a delta dis-
tribution for large systems as shown in Fig. 1.24. This means that the
statistics are very poor for values of T0 and T which are substantially
different, and results might be inaccurate or even wrong. One pos-
sible solution is to interpolate data from several temperatures (multi-
canonical method) but this involves computations for many tempera-
tures which is also inefficient for large systems. Another solution to
this problem, the so-called broad histogram method, has been presented
in Ref. [28].

1.7.1 Broad Histogram Method

The aim of the broad histogram method is to directly calculate the
degeneracy of states over a broader energy range. This concept is
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shown in Fig. 1.24. We therefore need to define a Markov process in
energy space which is not only exploring regions of certain energies.

Let Nup and Ndown be the numbers of processes which lead to an
increasing and decreasing energy, respectively. Furthermore, we have
to keep in mind that the degeneracy of states increases exponentially
with energy E, because the number of possible configurations increases
with energy. To explore all energy regions equally, we find a condition
equivalent to the one of detailed balance, i.e.,

g (E + ∆E) Ndown (E + ∆E) = g (E) Nup (E) . (1.114)

The motion in phase space towards higher energies can then be pe-
nalized with a Metropolis-like dynamics:

• Choose a new configuration,

• if the new energy is lower, accept the move,

• if the new energy is higher then accept with probability Ndown(E+∆E)
Nup(E) .

We obtain the function g(E) by taking the logarithm of Eq. (1.114)
and divide by ∆E

log [g (E + ∆E)]− log [g (E)] = log
[
Nup (E)

]
− log [Ndown (E + ∆E)] .

(1.115)
In the limit of small energy differences, we can approximate the last

equation by

∂ log [g (E)]
∂E

=
1

∆E
log
[

Nup (E)
Ndown (E + ∆E)

]
(1.116)

which we can numerically integrate to obtain g (E). Distributions
of Nup and Ndown can be obtained by keeping track of these numbers
for each configuration at a certain energy. In addition, we also need to
store the values of the quantity Q (E) we wish to compute as a thermal
average according to

Q (T) = ∑E Q (E) g (E) e−
E

kBT

∑E g (E) e−
E

kBT
. (1.117)

Based on a known degeneracy of states g (E), we can now compute
quantities at any temperature.

1.7.2 Flat Histogram Method

Another simulation method which aims at obtaining a broader energy
sampling has been described in Ref. [29] and is based on the following
procedure:
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Flat histogram method

• Start with g (E) = 1 and set f = e.

• Make a Monte Carlo update with p(E) = 1/g(E).

• If the attempt is successful at E: g(E) f · g(E).

• Obtain a histogram of energies H(E).

• If H(E) is flat enough, then f
√

f .

• Stop when f ≤ 1 + 10−8.

By setting the Monte Carlo update probability to 1/g(E), we obtain 
smaller transition probabilities for larger energies due to the larger 
number of possible configurations at the same energy. Therefore the 
method tends towards energies with fewer configurations. After a 
successful update, the values of g and of the energy E have to be 
updated. Once a histogram has been obtained one can increase the 
precision by decreasing f . The flatness of the histogram can be mea-
sured as the ratio of the minimum to the maximum value. For further 
details, see the Wang-Landau algorithm [30, 31].

1.7.3 Umbrella Sampling

The Umbrella sampling technique was developed and proposed in
Ref. [32]. The aim is to overcome the problem of the missing ergodicity
for certain energy landscapes. As an example, in the Ising model the
system could have difficulties in jumping from a positive to a negative
magnetization or vice versa if the system is very large. The basic idea
is to multiply transition probabilities with a function that is large at
the free energy barrier and to later on remove this correction in the
averaging step.

p̃ (C) =
w (C) e−

E(C)
kBT

∑C w (C) e−
E(C)
kBT

with 〈A〉 = 〈A/w〉w
〈1/w〉w

. (1.118)

Summarizing, some of the most common techniques related to the
histogram methods are

• Wang-Landau method [30, 31],

• Multiple histogram method [33],

• Multicanonical Monte Carlo [34],

• Flat Histogram method [29],

• Umbrella sampling [32].

impac
Pencil

impac
Pencil

impac
Pencil
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1.8 Renormalization Group

In this section, we discuss renormalization group methods and the
importance of symmetries to improve our simulations. In particular,
we introduce the main concepts of renormalization theory and present
some numerical results. For more details we refer to Ref. [35]. Usually,
the more information there is available about a system, the better cer-
tain quantities can be computed. Close to critical points, changes in the
scale of the system can be used to better extrapolate the values to an
infinite system. Furthermore, it is possible to develop scale-invariant
theories to describe the properties of Ising or similar systems in the
vicinity of their critical points.

Figure 1.25: The Koch snowflake as an
example of a self-similar pattern.

In the case of self-similar patterns, the invariance under scale transfor-
mations is obvious. A curve described by the function f (x) is said to
be scale-invariant if f (λx) = λ∆ f (x). In the case of the Koch curve
shown in Fig. 1.25, we obtain the same curve (∆ = 1) after a rescaling
with λ = 1/3n with n being an integer. Here, we also want to general-
ize this intuitive treatment of scale changes to concepts from statistical
physics. One possibility is to look at the free energy density and its
invariance. To renormalize a system means to change its scale by a
factor l such that L̃ = L/l. This can be done either in position, or in
momentum space.

1.8.1 Real Space Renormalization

If a system is invariant under a certain transformation, we can apply
this transformation infinitely often without changing the observables
of the system. At the critical point, there exist no finite correlation
length scales and the properties of the system are invariant under scale
changes. We thus regard criticality as a fixed point under such renor-
malization transformations [36]. In order to put the concept of renor-
malization into a mathematical framework, we discuss the examples of
free energy renormalization and of decimation of the one-dimensional
Ising model10. We then generalize the concept in Sec. 1.8.5 and present 10 H. J. Maris and L. P. Kadanoff describe

in Teaching the renormalization group that
“communicating exciting new develop-
ments in physics to undergraduate stu-
dents is of great importance. There is a
natural tendency for students to believe
that they are a long way from the fron-
tiers of science where discoveries are still
being made.” [37]

the implementation of renormalization within Monte Carlo procedures
in Sec. 1.8.6.

1.8.2 Renormalization and Free Energy

To build some intuition for renormalization approaches, we consider a 
scale transformation of the characteristic length L of our system that 
leads to a rescaled characteristic length L̃ = L/l. Moreover, we consider 
the partition function of an Ising system as defined by the Hamiltonian 
given in Eq. (1.16). A scale transformation with L̃ = L/l
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leaves the partition function

Z = ∑
{σ}

e−βH (1.119)

and the corresponding free energy invariant [4]. We therefore find
for the free energy densities

f (ε, H) = l−d f̃
(
ε̃, H̃

)
. (1.120)

We set ε̃ = lyT ε and H̃ = lyH H to obtain

f̃
(
ε̃, H̃

)
= f̃ (lyT ε, lyH H) . (1.121)

Since renormalization also affects the correlation length

ξ ∝ |T − Tc|−ν = |ε|−ν (1.122)

we can relate the critical exponent ν to yT . The renormalized correla-
tion length ξ̃ = ξ/l scales as

ξ̃ ∝ ε̃−ν. (1.123)

And due to

lyT ε = ε̃ ∝ ξ̃−
1
ν =

(
ξ

l

)− 1
ν

∝ εl
1
ν , (1.124)

we find yT = 1/ν.
The critical point is a fixed point of the transformation since ε = 0 at Tc

and ε does not change independent of the value of the scaling factor.

1.8.3 Majority Rule

A straightforward example which can be regarded as renormalization
of spin systems is the majority rule. Instead of considering all spins in
a certain neighborhood separately, one just takes the direction of the
net magnetization of these regions as new spin value, i.e.,

σ̃i = sign

(
∑

region
σi

)
. (1.125)

Figure 1.26: An illustration of the major-
ity rule renormalization.

One has to be careful by applying this transformation. For example, in
a one-dimensional lattice with spins pointing up and down it would
be an error to apply this transformation on an even number of spins.
This may lead to renormalized spin values with value zero. The fact
that one deals with system of finite size is also something that has to
be taken into account. We can only renormalize up to a certain scale,
before finite size effects are visible.
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1.8.4 Decimation of the One-dimensional Ising Model

Another possible rule is decimation which eliminates certain spins, gen-
erally in a regular pattern. As a practical example, we consider the
one-dimensional Ising model.

The spins only interact with their nearest neighbors and the cou-
pling constant K = J/(kBT) is the same for all spins. An example

Figure 1.27: An example of a one-
dimensional Ising chain.of such a spin chain is shown in Fig. 1.27. To further analyze this

system, we compute its partition function Z and obtain

Z = ∑
{σ}

eK ∑i σi = ∑
σ2i=±1

∏
2i

[
∑

σ2i+1=±1
eK(σ2iσ2i+1+σ2i+1σ2i+2)

]
= ∑

σ2i=±1
∏
2i
{2cosh [K (σ2i + σ2i+2)]}

= ∑
σ2i=±1

∏
2i

z (K) eK̃σ2iσ2i+2

= [z (K)]
N
2 ∑

σ2i=±1
∏
2i

eK̃σ2iσ2i+2 ,

(1.126)

where we used in the third step that the cosh(·) function only depends
on even spins.

According to Eq. (1.126), the relation

Z(K, N) = [z (K)]
N
2 Z(K̃, N/2) (1.127)

holds as a consequence of the decimation method. The function z(K)
is the spin-independent part of the partition function and K̃ is the
renormalized coupling constant.

We compute the relation z (K) eK̃s2is2i+2 = 2cosh [K (s2i + s2i+2)] ex-
plicitly and find

z (K) eK̃s2is2i+2 =

2cosh (2K) if s2i = s2i+2,

2 otherwise .
(1.128)

Dividing and multiplying the last two expressions yields

e2K̃ = cosh (2K) and z2 (K) = 4 cosh (2K) . (1.129)

And the renormalized coupling constant K̃ in terms of K is given by

K̃ =
1
2

ln [cosh (2K)] . (1.130)

We illustrate the fixed point iteration of Eq. (1.130) in Fig. 1.28. We
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Figure 1.28: An illustration of the fixed
point iteration defined by Eq. (1.130).

have thus obtained a rule which describes the change of the coupling
constant under renormalization. Given the partition function, we now
compute the free energy according to F = −kBTN f (K) = −kBT ln (Z)
with f (K) being the free energy density. Taking the logarithm of
Eq. (1.127) yields

ln [Z(K, N)] = N f (K) =
1
2

N ln [z(K)] +
1
2

N f
(
K̃
)

. (1.131)

Based on the last equation, we can derive the following recursive rela-
tion for the free energy density

f
(
K̃
)
= 2 f (K)− ln

[
2 cosh (2K)1/2

]
. (1.132)

There exists one stable fixed point at K∗ = 0 and another unstable one
at K∗ → ∞. Every fixed point (K∗ = K̃) implies that Eq. (1.132) can be
rewritten due to f

(
K̃
)
= f (K∗).

The case of K∗ = 0 corresponds to the high-temperature limit where
the free energy approaches the value

F = −NkBT f (K∗) = −NkBT ln(2). (1.133)

In this case, the entropy dominates the free energy. For K∗ → ∞,
the system approaches the low temperature limit and the free energy
is given by

F = −NkBT f (K∗) = −NkBTK = −NJ, (1.134)

i.e., given by the internal energy.

1.8.5 Generalization

In the case of the decimation process for the one-dimensional Ising
system, we found that one renormalized coupling constant was suf-
ficient to perform a renormalization iteration. In general, multiple
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coupling constants are necessary as for example in the case of the two-
dimensional Ising model. Thus, we have to construct a renormalized
Hamiltonian based on multiple renormalized coupling constants, i.e.,

H̃ =
M

∑
α=1

K̃αÕα with Õα = ∑
i

∏
k∈cα

σ̃i+k (1.135)

where cα is the configuration subset over which we renormalize and

K̃α (K1, . . . , KM) with α ∈ {1, . . . , M} . (1.136)

It is important to note that using only M interaction terms instead
of an infinite number is a truncation, and in fact leads to systematic er-
rors. The accuracy of this method depends on the number of iterations
that we want to take into account.

At Tc there exists a fixed point K∗α = K̃α

(
K∗1 , . . . , K∗M

)
. A possible

ansatz to solve this problem is the linearization of the transformation.
Thus, we compute the Jacobian Tα,β = ∂K̃α

∂Kβ
and obtain

K̃α − K∗α = ∑
β

Tα,β
∣∣
K∗

(
Kβ − K∗β

)
. (1.137)

We can now construct a flow chart of the coupling constant and
obtain values for K̃ for each vector K = (K1, . . . , KM). To analyze
the behavior of the system close to criticality, we consider eigenvalues
λ1, . . . , λM and eigenvectors φ1, . . . , φM of the linearized transforma-
tion defined by Eq. (1.137). The eigenvectors fulfill φ̃α = λαφα and the
fixed point is unstable if λα > 1.

The largest eigenvalue dominates the iteration and we can identify
the scaling field ε̃ = lyT ε with the eigenvector of the transformation,
and the scaling factor with eigenvalue λT = lyT . Then, we compute
the exponent ν according to

ν =
1

yT
=

ln (l)
ln (λT)

. (1.138)

Based on the last equation, we can now calculate critical expo-
nents using the scaling behavior of the system, if the scaling factor
l is known.

1.8.6 Monte Carlo Renormalization Group

The implementation of real space renormalization with Monte Carlo
techniques was first proposed in Ref. [38] and then reformulated in
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Ref. [39].
Since we are dealing with generalized Hamiltonians with many in-

teraction terms, we compute the thermal average of Oα according to

〈Oα〉 =
∑{σ}Oαe∑β KβOβ

∑{σ} e∑β KβOβ
=

∂F
∂Kα

(1.139)

where F is the free energy.
Using the fluctuation-dissipation theorem, we can also numerically

compute the response functions

χα,β =
∂ 〈Oα〉

∂Kβ
=
〈
OαOβ

〉
− 〈Oα〉

〈
Oβ

〉
,

χ̃α,β =
∂
〈
Õα

〉
∂Kβ

=
〈
ÕαOβ

〉
−
〈
Õα

〉 〈
Oβ

〉
.

We also find with Eq. (1.139) that

χ̃
(n)
α,β =

∂
〈

Õ(n)
α

〉
∂Kβ

= ∑
γ

∂K̃γ

∂Kβ

∂
〈

Õ(n)
α

〉
∂Kγ

= ∑
γ

Tγ,βχ
(n)
α,γ. (1.140)

It is thus possible to derive a value of Tγ,β from the correlation
functions by solving a set of M coupled linear equations. At point
K = K∗, we can apply this method in an iterative manner to compute
critical exponents as suggested by Eq. (1.138).

There are many error sources in this technique, that originate from
the fact that we are using a combination of several tricks to obtain our
results:

• Statistical errors,

• Truncation of the Hamiltonian to the Mth order,

• Finite number of scaling iterations,

• Finite size effects,

• No precise knowledge of K∗.

1.9 Boltzmann Machine

In recent years the field of machine learning experienced a substantial
boom due to the growing amount of training data and the increase in
computing power. Many algorithms that had been around for decades
have been developed further and new methods emerged during the
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past few years. The general idea behind machine learning is the devel-
opment of computational methods to perform a certain task with a per-
formance that can be improved with more training data. One could think
of the learning problem, in more abstract terms, as a function which
depends on multiple parameters and maps a given input to an output.
We distinguish between supervised and unsupervised learning tasks. In
supervised learning, we are given input-output pairs and adjust the
parameters of the function such that we obtain good performance in
mapping given inputs to desired outputs. In the case of unsupervised
learning, we aim at extracting the underlying probability distribution
of the sample data.

Many learning models and algorithms lack a solid theoretical ba-
sis and are therefore not very well understood. Recently, many at-
tempts have been made to characterize certain learning algorithms
with methods from statistical physics such as renormalization group
approaches [40]. We therefore now focus on one particular exam-
ple, the so-called Boltzmann machine, whose origins lie in statistical
physics [41]. This allows us to transfer some of our acquired knowl-
edge on computational sampling techniques in statistical physics to
the field of machine learning.

1.9.1 Hopfield Network

We begin our excursion to Boltzmann machines with a network con-
sisting of neurons which are fully connected, i.e., every single neuron
is connected to all other neurons. A neuron represents a node of a net-
work and is nothing but a function of I different inputs {xi}i∈{1,...,I}
which are weighted by {wi}i∈{1,...,I} to compute and output y. A
single neuron is shown in Fig. 1.29.

Figure 1.29: An illustration of a sin-
gle neuron with output y, inputs
{xi}i∈{1,...,I} and weights {wi}i∈{1,...,I}.

In terms of a Hopfield network, we consider discrete inputs xi ∈
{−1, 1}. The activation of neuron i is given by

ai = ∑
j

wijxj, (1.141)

where we sum over the inputs. The weights fulfill wij = wji and wii =

0. Similarly to the Ising model, the associated energy is given by

E = −1
2 ∑

i,j
wijxixj −∑

i
bixi, (1.142)

where bi is the bias term.
The dynamics of a Hopfield network is given by

xi(ai) =

1 if ai ≥ 0,

−1 otherwise.
(1.143)
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The energy difference ∆Ei after neuron i has been updated is

∆Ei = E(xi = −1)− E(xi = 1) = 2

(
bi + ∑

j
wijxj

)
. (1.144)

We can absorb the bias bi in the sum by having an extra active unit at
every node in the network. We thus showed that the activation defined
by Eq. (1.141) equals one half of the energy difference ∆Ei.

Given the update rule defined by Eq. (1.143), the energy of the Hop-
field network is decreasing over time towards a value which might not
correspond to the global minimum. One application of Hopfield net-
works is to store certain information in local minima with only setting
the values of a small number of neurons. Starting from such an initial
configuration, the dynamics converges towards the state containing
the desired information.

1.9.2 Boltzmann Machine Learning

For some applications, finding a local minimum based on the de-
terministic update rule defined by Eq. (1.143) might not be sufficient.
Similar to the discussion of Monte Carlo methods for Ising systems,
we employ an update probability

pi =
1

1 + exp(−∆Ei/T)
= σ(2ai/T) (1.145)

to set neuron i to unity independent of its state [42]. Here, σ(x) =

1/ [1 + exp(−x)] denotes the sigmoid function. As defined in
Eq. (1.144), the energy difference ∆Ei is the gap between a configu-
ration with an active neuron i and an inactive one. The parameter T
acts as temperature equivalent11. 11 For T → 0, we recover deterministic

dynamics as described by Eq. (1.143).A closer look at Eqs. (1.142) and (1.145) tells us that we are sim-
ulating a Hamiltonian system with Glauber dynamics. Due to the
fulfilled detailed balance condition, we reach thermal equilibrium and
find again for the probabilities of the system to be in state X or Y12 12 Here we set kB = 1.

peq(Y)
peq(X)

= exp
(
−E(Y)− E(X)

T

)
. (1.146)

Independent of the initial configuration, the last stochastic update
procedure always leads to a unique thermal equilibrium configuration
fully determined by its energy. We divide the Boltzmann machine
units into visible and hidden units represented by the non-empty set V
and the possibly empty set H, respectively. The visible units are set
by the environment whereas the hidden units are additional variables
which might be necessary to model certain outputs. Let P′(ν) be
the probability distribution over the visible units ν in a freely running
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network. It can be obtained by marginalizing over the corresponding
joint probability distribution, i.e.,

P′(ν) = ∑
h

P′ (ν, h) , (1.147)

where h represents a hidden unit. The goal is to come up with a
method such that P′(ν) approaches the unknown environment distri-
bution P(ν). We measure the difference between P′(ν) and P(ν) in
terms of the Kullback-Leibler divergence (relative entropy)

G = ∑
ν∈V

P(ν) ln
[

P(ν)
P′(ν)

]
. (1.148)

To minimize G, we perform a gradient descent according to

∂G
∂wij

= − 1
T

(
pij − p′ij

)
, (1.149)

where pij is the probability that two units are active on average if the
environment is determining the states of the visible units and p′ij is the
corresponding probability in a freely running network without a cou-
pling to the environment. Both probabilities are measured at thermal
equilibrium. In the literature, the probabilities pij and p′ij are also often
defined in terms of the thermal averages 〈xixj〉data and 〈xixj〉model, re-
spectively. The weights wij of the network are then updated according
to

∆wij = ε
(

pij − p′ij
)
= ε

(
〈xixj〉data − 〈xixj〉model

)
, (1.150)

where ε is the learning rate. For general learning tasks, the Boltz-
mann machine is impractical since the times to reach the equilibrium
distribution become large for large system sizes. The so-called re-
stricted Boltzmann machine is not taking into account mutual connec-
tions within the set of hidden and visible units, and turned out to be
more suitable for learning tasks. In the case of restricted Boltzmann
machines, the weight update is given by

∆wij = ε
(
〈νihj〉data − 〈νihj〉model

)
, (1.151)

where νi and hj represent visible and hidden units, respectively.
Instead of sampling the configurations for computing 〈νihj〉data and
〈νihj〉model at thermal equilibrium, we could also just consider a few
relaxation steps. This method is called contrastive divergence and de-
fined by the following update rule

∆wCD
ij = ε

(
〈νihj〉0data − 〈νihj〉kmodel

)
, (1.152)

where the superscript indices indicate the number of updates.
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1.10 Parallelization

After introducing different algorithms for the simulation of differ-
ent equilibrium systems, we now discuss parallelization techniques to
make the necessary computations faster. Parallelization can lead com-
putation times which are entire ordners of magnitudes faster com-
pared to a purely serial simulation! The easiest way to parallelize
and to obtain better statistics is farming, i.e., executing the simulation
on different computers or processors with different initial conditions.
This technique is useful in situations such as Ising Monte Carlo simu-
lations where one has to repeat the exact same sequence of operations
as many times as possible. Farming is, of course, just a method to im-
prove statistics with generating more samples for system sizes that fit
into a single machine. More sophisticated parallelization techniques
are presented in the subsequent sections13. 13 The courses High Performance Com-

puting for Science and Engineering I & II
provide an in-depth discussion of paral-
lelization methods. A good introduction
to parallel programming has also been
prepared by the Jülich Supercomputing
Centre: download slides.

1.10.1 Multi-Spin Coding

The idea behind multi-spin coding is based on the fact that on a 64

bit system not all the bits are used for computations. This method
is useful for integer variables limited to a certain value. In the case
of the Ising model, we are dealing with spins σi ∈ {±1}. Storing
such spin values in 64 bit integers is not only a waste of memory
but also leads to a waste of computation time since most of the bits
are not carrying any information. In a cubic lattice, the local field
takes values hi ∈ {0,±2,±4,±6} what corresponds to seven different
values. In binary representation, three bits are sufficient to store up
to eight different numbers. Therefore, three bits would be enough to
represent all possible local field and energy values of any site σi while
61 bits remain unused. Spin configurations can also be stored more
efficiently using the sequences (000) and (001) which correspond to
spin down an spin up, respectively. The XOR function (⊕) of two spin
sequences yields (000) whenever two spins are parallel and (001) for
anti-parallel spins. We can now store 21 spin values σi, . . . , σi+20 in a
single 64 bit integer word, i.e.,

N = (δ1, δ2, δ3, δ4︸ ︷︷ ︸
σi+20

, ..., δ62, δ63, δ64︸ ︷︷ ︸
σi

), (1.153)

where δ(·) ∈ {0, 1}. Similarly, we also store the six neighbors of each
spin in N in integer words K1, . . . , K6. Thus, only one bit per computer
word remains unused, instead of 63. No spins in N shall be neighbors
and one has to be very careful with the organization of storing spins.
The flipping probabilities for all 21 spins are determined by

N ⊕ K1 + N ⊕ K2 + N ⊕ K3 + N ⊕ K4 + N ⊕ K5 + N ⊕ K6. (1.154)

https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/mpi/mpi-openmp-handouts.pdf?__blob=publicationFile
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After determining the flipping probabilities, each value has to be ex-
tracted and compared with a random number. To extract the informa-
tion of one lattice site, we define the mask 7 = (0, . . . , 0, 1, 1, 1). We
apply the AND (∧) function to Eq. (1.154) and obtain

7∧ Nj = (0, ..., 0, 1, 1, 1) ∧ (δ1, ..., δ62, δ63, δ64) = (0, ...0, δ̃62, δ̃63, δ̃64),
(1.155)

where δ̃(·) are the last three bit values of the integer word defined by
Eq. (1.154). With the circular right shift operator or the circular left
shift operator we can also access the remaining bits of Eq. (1.154). Ac-
cording to Ref. [43] “multi spin coding makes a program more complicated
and error-prone but may save a lot of memory and computer time for large
systems. The more complicated the interaction is, the less useful is multispin
coding, and for continuous degrees of freedom it does not seem to work at all.”

1.10.2 Vectorization

Vectorization is technique which allows to perform multiple opera-
tions at the same time. It only works in the innermost loops of a
program. As an example, we consider the following loop:

i_max = 10000 ;
f o r ( i =1 ; i <=i_max ; i ++)
{

A( i ) = B ( i ) * (C( i ) + D( i ) ) ;
}

With the help of vectorizing compilers, the loop can be made more
efficient for simulations by executing multiple operations simultane-
ously. In the case of more complicated routines, this may have to be
implemented directly. The drawbacks of vectorization include:

• Multiple short loops,

• conditional branchings like if-statements,

• indirect addressing.

For optimal performance, the instructions must be repetitive without
interruptions or exceptions such as if statements There are ways to
handle some cases in which a distinction is needed. An example would
be replacing

i f ( P ( i ) >z )
{

s = −s ;
}

by
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s = s * s ign ( z−P ( i ) ) ;

Moreover, one has to make sure that the inner loop is the largest and
loops that cannot be vectorized should be split up. It is also recom-
mended to make use of vectorized random number generators.

1.10.3 Domain Decomposition

Monte Carlo simulations on regular lattices are well-suited for par-
allelization. The following points summarize the basic ideas behind
parallelization:

Domain decomposition

• Nearest-neighbor updates do not involve the whole system.

• Domain decomposition into sublattices is possible.

• The decomposed domains are distributed using MPI.

• Sublattices are extracted with logical masks.

• A periodic shift (CSHIFT) is used to obtain neighbors for
periodic boundary conditions.

There are many options for dividing a system into domains. De-
pending on the situations it can be more convenient to increase the
number of domains or reducing the interfaces between domains in
case that the processes need to work independently (e.g., in the case
of distributed memory). It is also possible to dynamically change the
domain sizes and interface positions.

To parallelize a routine one has to use specific programming lan-
guages created specifically for parallelizing or embed special libraries
in which the parallelization has been implemented in such a way
that it can be summoned in standard programming languages such
as C++. An interesting example is CUDA (Compute Unified Device
Architecture), a parallel computing platform and programming model
created by NVIDIA and implemented in their graphics processing
units. Moreover, MPI (Message Passing Interface) is a standardized
and portable message-passing system. This means that instructions
can be passed by the user within programs written in languages such
as Java or C++.

The bottleneck of parallelization is the communication between pro-
cessors. Processors are not isolated units that completely work on
their own, and the more one slices the system into domains, the more
communication between processors is needed. This is generally not
efficient and usually slows down the parallelization14. 14 Furthermore, some parts of a program

are not parallelizable. Amdahl’s law es-
tablishes a relation between the theoret-
ical speed-up and the fraction of paral-
lelizable code.
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1.11 Non-Equilibrium Systems

Models approaching thermal equilibrium obey detailed balance, that is
their probability flows cancel out each other. With the Ising model and
its generalization the Potts model, we studied two examples of equilib-
rium systems. In Sec. 1.6.2, we have shown that the Potts model also
contains isotropic (bond) percolation as a special case. These mod-
els have in common that they exhibit phase transitions with universal
features, such as scaling laws and universal exponents. In contrast to
isotropic percolation, directed percolation defines a non-equilibrium
process with different universal properties [4]. Both processes are very
fundamental in the sense that they are simple to define, but also in-
clude features which are observed in a variety of models and con-
texts. In particular, models describing certain hadronic interactions
or the spreading of opinions or diseases have been mapped to equi-
librium (percolation) and non-equilibrium (directed percolation) pro-
cesses [4, 44].

1.11.1 Directed Percolation

Figure 1.30: In the left panel, we show
the second-order phase transition of the
directed percolation model. The grey
lines illustrate the effect of a field-like
contribution. An example of bond di-
rected percolation on a two-dimensional
square lattice with different control pa-
rameter values p is shown in the right
panel. At around pc = 0.6447 a second-
order phase transition occurs [4].

Isotropic percolation is an equilibrium process in which a site or
bond is occupied with a certain probability p. However, in the case
of directed percolation an additional constraint is defined, namely in
each time step occupied sites or bonds occupy their neighbors with
probability p only along a given direction [45]. Time is therefore a
relevant parameter.

Both models have a critical probability pc at which a percolating
(permeable) phase occurs. This behavior is illustrated in Fig. 1.30. In
the vicinity of pc the percolation order parameter P(p), the fraction of
sites of the largest cluster (istropic percolation) or the density of active
sites (directed percolation), takes the form: P(p) ∝ (p− pc)β.
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Although, the free energy is not defined in non-equilibrium pro-
cesses one can distinguish between first-order and continuous phase
transitions based on the behavior of the order parameter.

Table 1.2: The critical infection rate λc
and the critical exponent β on a square
lattice for different dimensions d. At
and above the critical dimension dc =
4 the critical exponents are described
by mean-field theory [4]. The values
are rounded to the second decimal and
taken from Refs. [46] and [47].

d = 1 d = 2 d = 3 dc = 4

λc 3.30 1.65 1.32 1.20

β 0.28 0.59 0.78 1

Another formulation of directed percolation is given by the contact
process. On a lattice with active (si(t) = 1) and inactive (si(t) = 0)
sites, we sequentially update the system according to the following
dynamics:

Let the number of active neighbors neighbors be ni(t) = ∑〈i,j〉 sj(t)
and a new value si(t + dt) ∈ {0, 1} is obtained according to the transi-
tion rates

w[0→ 1, n] = (λn)/(2d) and w[1→ 0, n] = 1, (1.156)

where d is the dimension of the system.
On a square lattice the critical values λc and β for the contact process

with d ≤ dc are given in Tab. 1.2. The contact process has the same
characteristic critical exponents as directed percolation what implies
that they both belong to the same universality class. According to
Ref. [4] the directed percolation universality class requires:

1. a continuous phase transition from a fluctuating phase to a unique
absorbing state,

2. a transition with a one-component order parameter,

3. local process dynamics,

4. no additional attributes, such as conservation laws or special sym-
metries.

1.11.2 Kinetic Monte Carlo (Gillespie Algorithm)

Non-equilibrium systems are not described by a Hamiltonian and we
cannot use the same algorithms which we employed for studying the
Ising model or other equilibrium models. Time is now a physical pa-
rameter and not a mere virtual property of a Markov chain.

A standard algorithm for simulating non-equilibrium dynamics is
the kinetic Monte Carlo method which is also often referred to as Gille-
spie algorithm.

To give an example, the kinetic Monte Carlo algorithm is applied to
the contact process on a two-dimensional square lattice. Recovery and
activation define n = 2 processes with corresponding rates R1 = 1 and
R2 = λ.

At time t, the subpopulation N1(t) consists of all active nodes which
recover with rate R1. The total recovery rate is then given by Q1(t) =
N1(t).
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On the square lattice only nearest-neighbor interactions are consid-
ered and the total rate of the second process (activation) is obtained by
computing ni and w [0→ 1, ni] according to Eq. (1.156) for all nodes.

The following steps summarize a general kinetic Monte Carlo up-
date15 15 It is important to use local updates

and not recommended to iterate over the
whole system at each time step.Kinetic Monte Carlo algorithm

1. Identify all individual rates (per node) {Ri}i∈{1,...,n}.

2. Determine the overall rates (all nodes) {Qi}i∈{1,...,n}, where
Qi = Ri Ni and Ni defines the subpopulation which corre-
sponds to Ri. It is possible that some subpopulations are
identical but correspond to different rates.

3. Let η ∈ [0, 1) be a uniformly distributed random number
and Q = ∑i Qi. The process with rate Rj occurs if ∑

j−1
i=1 Qi ≤

ηQ < ∑
j
i=1 Qi.

4. Let ε ∈ [0, 1) be a uniformly distributed random num-
ber. Then the time evolves as t → t + ∆t, where ∆t =

−Q−1 log(1− ε) and return to step 2.
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