Exercise 1. Event-driven Molecular Dynamics

Goal: So far in our MD simulations we were using particles interacting with each other via a continuous potential. Event-driven simulations are able to model particles interacting by hard core potentials considering binary collisions (i.e. no lasting contacts). Between these binary collisions the trajectories of the particles can be calculated analytically. In systems without external forces (e.g. gravity) the particles follow straight paths between collisions.

The collision time between pairs of particles can be calculated as follows

$$|\mathbf{r}_{ij}(t_0) + \mathbf{v}_{ij}(t_0)t_{ij}| = R_i + R_j$$

where r_{ij} is the distance vector between particles *i* and *j*, v_{ij} their velocity difference, t_{ij} the collision time and R_i , R_j the radii of the hard spheres. t_0 is the time at which the last collision occurred. In this method one has to calculate the collision time between all particle pairs to get the "global" collision time $t_C = \min_{ij}(t_{ij})$.

Task 1: Implement the event-driven dynamics either in 1D or 2D.

Hint: In the 1D case: No quadratic equation has to be solved. Only neighboring particles interact with eacht other. The sphere radii can be set to 0. Assume that all particles have the same mass m.

Hint: In the 2D case: Consider collisions with perfect slip. Assume that all particles have the same mass m and the same radius R.

Task 2: Solve some simple problems with different initial conditions. For example:

- Consider a 1D chain of N beads in a box with restitution coefficient e = 1 (such that the total energy is conserved).
- Consider a 1*D* chain of *N* beads with restitution coefficient e < 1 hitting a resting wall. What is the effective restitution coefficient $e_{\text{eff}} = \sqrt{E_f/E_i}$ where E_i and E_f are the initial and final kinetic energies of the chain, respectively. Vary *N* at fixed *e*. Above which *N* does the effective restitution coefficient practically vanish, i.e. the cluster does not re-bounce anymore?

Task 3 (OPTIONAL): Speed up your code by storing the events for each particle in a priority queue (see lecture notes). While checking all particle pairs requires $\mathcal{O}(N^2)$ operations, generating events only for the colliding particles and inserting them in the queue is only $\mathcal{O}(N \log(N))$.¹

Hint: Only the interacting particles need to be advanced but keep in mind that the collision can invalidate previously predicted events. You can either remove them manually from the queue in time $\mathcal{O}(N)$ or, more efficiently, keep a counter of each particle's collisions and identify an event as invalid only when resolving it.

¹The bound is even tighter in 1D. Also methods for an insertion time of $\mathcal{O}(1)$, i.e. $\mathcal{O}(N)$ in total, have been proposed: https://arxiv.org/pdf/physics/0606226.pdf.