—Xxercise class 1

Maximilian Holst
Toni Heugel

General information

First part:
Discussion of the previous exercise
- Additional information about the new exercise

Second part:
* You work on the tasks
* You can ask gquestions

General information

- Default programming language: Julia
* You are free to use your favorite language
- Hand-in is voluntary

The procedure for handing in your results (if you want to do so) is:

1. Create a new directory named in the format exXX_lastname_firstname (XX is the corre-
sponding exercise sheet. number).

2. Copy the solution files into this directory. The files should be formatted in a readable way.
Make sure that you include both the scurce code (e.g. x.3jl) as well as a scientific report
in pdf-format that includes a list of used parameters, the plots you produced (with these
parameters) and additional comments/explanations.

3. Zip the directory and send it to holstm@phye.ethz. ch.

Hand-ins that do not follow this guidline will not be accepted! Please do not hand in files that
do not need tu be correcled!

Why Julia?

't solves the tradeoff: fast coding vs. fast execution

+ Code like in python
* Execution nearly as fast as C

Installing Julia

https://julialang.org

Downloed

julia

Documentaticn

Bleg Community Legrning

Research JSoC At

The Julia Programming Language

Download v1.3 Documentation

* Star 25,558

Julia is fast!

Julia was designed from the teginning for nigh
parfarmance Julia programs campile to efficient
native code far multiple platfaorms via LLVM.

General

Julia uses multiole dispatch as a paradigm,
miaking it casy 10 express many object-oriented
and functicna’ programming pattems. K provides
asynchronous 110, debugging, logging, srofiling, @
package meaneger, and more.

Julia in a Nutshell

Dynamic
Julia is dynemically-tyoad, f=els like a scripting

lanquage, and 7as good support for interactva
use

Easy to use

Julia has high level syntax, making it an
accessible language for programmers frem any
beckground cr expzarience level, Browse the Julia
microbenchmarks to get e teal for the language.

Optionally typed

Julie hes & rich 'enguage of descriptive
datatypes, and type declarations can be usec 1o
clarify and solidify pragrams.

Open source

Julia is provided under the MIT license, free for
everyene 1o use, All scurce code is publicly
viewsble on GitHub.

Installing Julia

Download Julia

If vou like Julia, plcase consider starring us on GitHub anc spreading the word!
C)Ster 25553

We provide several ways for you te run Julia:

e In the terminal using the built-in Juliz command fine using the binares provided below.

» Using Decker images from Decker Hub maintained by the Docker Cemmunity.

* JuliaPro by Jula Compuing includes Julia anc the Juno IDE, alorg with access to a curated set of packages for plotting, optimization, machne
lzarning, catsbaze: and much more [requires registration).

Fleasa sea platiorm specific instructons for further installason irstructions and if you have trouble instzlling Julia. if the provided download hiles do not
work for you, pleass file anizsuein the Julia projsct. Different GSes and architectures have varying lisrs of support, and are listed at the hottom of this

page.

Current stable release: v1.3.1 (Dec 30, 2019)

Checksums for this release are availadle in both MDS and SHAZSE formats.,

Windows (.exe) [help] 32-hit f4-hit
macOS 10.8+ (.dmg) [help] fa-hit

Generic Linux Binaries for x86 [help] 32-bit |GPC) ga-bit [GPG)

Generic Linux Binaries for ARM [help] 32-bit |ARM7-3a hard float) (GPC) 84-bit [AArch8d) (GPG)
Generic FreeBSD Binanes for xB6 [help) Ba-bt (GP3G)

Source Taraall (GPG) Tarkall with cependencies |GRPG) GitHub

=un Julia

julia

- |n console; code...

exit()

+Julia myscript.|l

- Juno, Jupiter,...

Installing packages

|ﬂSta|| paCkage julia> using Pkg; Pkg.add("myPkg")}

Include package: iuie using avpiol

julia> import myPkgl julia> myPkg.function(x)}

Dlotting

0.3

D4

0.2

(julia> using Plots

[Julia> gr()
Plots.GRBackend()

(julia> plot(rand(4,2))

julia> []

-

Arrays

Empty:
/Eros:
Ones:

Column
Vector:

Row
vVector:

a=|]
Zeros(3)
ones(3,2)
[1, 2, 3]

[1 2 3]

a[1] index counting starts
from 1!

a[from:step:to]

a[from:to]

Arrays

N-dimensional array:

- A=[[1,2,3][4,5, 6] Alrow, coll
- A=[14;25;36] Al4] — 4
Array of arrays:

Functions: exp.(A)

[i+j fou

N row ’

r 1

N col

zeros(Int, N col, N _row)

1:N_col,]

a_TI[i,j] alj,1i]

i=1:2, j=1:3]

1:N_row

Functions

 fix,y) =2x+y
- function f(x, y) function f(x, y)
2X +V return 2x + vy
end end

Functions which manipulate input:

function g!(x)
X[2] = 2
end

ETH Computational Statistical Physics FS 2020

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich ExerCise Sheet O]_ Oded Zﬂberberg

Exercise 1. Ising model

Goal: We start by simulating the 3D Ising model using the Metropolis-based single-spin
flip Monte Carlo method. For those who attended last semester’s lecture it is (to some
degree) a revision.

Write a program for a Monte Carlo simulation to solve the three-dimensional Ising model with
periodic boundary conditions. Implement the single-spin flip Metropolis algorithm for sampling.
As you will have to reuse this code for upcoming exercise sheets, it might be worth to make sure
that it is well-structured!

Task 1: Measure and plot the energy E, the magnetization M, the magnetic susceptibility x
and the heat capacity Cy at different temperatures 7.

Task 2: Determine the critical temperature 7.

Hint: You should obtain 1, ~ 4.51.

Task 3: Study how your results depend on the system size.
Hint: Start with small systems to reduce the computation time.

Task 4 (OPTIONAL): Save computation time by avoiding unnecessary reevaluations of the
exponential function. To achieve this, use an array to store the possible spin-flip acceptance
probabilities.

Task 5 (OPTIONAL): Plot the time dependence of M for a temperature T" < T.

Hint: For small systems you should be able to observe sign-flips in M.

D [Sing model

Hamiltonian: ==/ ;; 75~ H Y0
L] l

1
Mean of observable: (O) = Z O(x)Ee—ﬁH@)

Relevant observables at zero magnetic field:

Energy (H)
Magnetization <%Zo~>

Susceptibility SUM?) — (M)?)

Heat capacity S*((E*) — (E)?)

Monte Carlo sampling

Rather than computing the observables over the exponentially large
phase space, we sample them on statistically relevant configurations

1. Choose randomly a new configuration in phase
space

2. Accept or reject the new configuration, depending
on the strategy

3. Compute physical quantities

4. Repeat

Metropolis algorithm

- Propose new configuration: o; = — o;

Probability = 1/N

+ Accept new configuration with probability

min (1, exXp <_:B(Enew — old)))

& Ergodic
& Detailed balance

Implementation

- Start with any spin configuration (e.g. random)

Per
Samp

'orm MC-steps until the system is thermalized
INg:

+ Calculate observables and keep them for
sampling
Do subsweep to obtain a new uncorrelated
configuration (again calculate the observables)

Re
Post
- Ca

CU

Repeat |

neat
Orocessing

ate mean and fluctuations

or different temperature and system size

Hints

- Julia is column major
+ Calculate energy and magnetization for

new configuration locally

111111
11111111
1111111

- Use a lookup table for the the Metropolis
acceptance probabilities

