Exercise class 2

Maximilian Holst Toni Heugel

Solution exercise sheet 1

ETH	Computational Statistical Physics	FS 2020
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	Exercise sheet 01	Oded Zilberberg

Exercise 1. Ising model

Goal: We start by simulating the 3D Ising model using the Metropolis-based single-spin flip Monte Carlo method. For those who attended last semester's lecture it is (to some degree) a revision.

Write a program for a Monte Carlo simulation to solve the three-dimensional Ising model with periodic boundary conditions. Implement the *single-spin flip* Metropolis algorithm for sampling. As you will have to reuse this code for upcoming exercise sheets, it might be worth to make sure that it is well-structured!

Task 1: Measure and plot the energy E, the magnetization M, the magnetic susceptibility χ and the heat capacity C_V at different temperatures T.

Task 2: Determine the critical temperature T_c .

Hint: You should obtain $T_c \simeq 4.51$.

Task 3: Study how your results depend on the system size.

Hint: Start with small systems to reduce the computation time.

Task 4 (OPTIONAL): Save computation time by avoiding unnecessary reevaluations of the exponential function. To achieve this, use an array to store the possible spin-flip acceptance probabilities.

Task 5 (OPTIONAL): Plot the time dependence of M for a temperature $T < T_c$.

Hint: For small systems you should be able to observe sign-flips in M.

Implementation

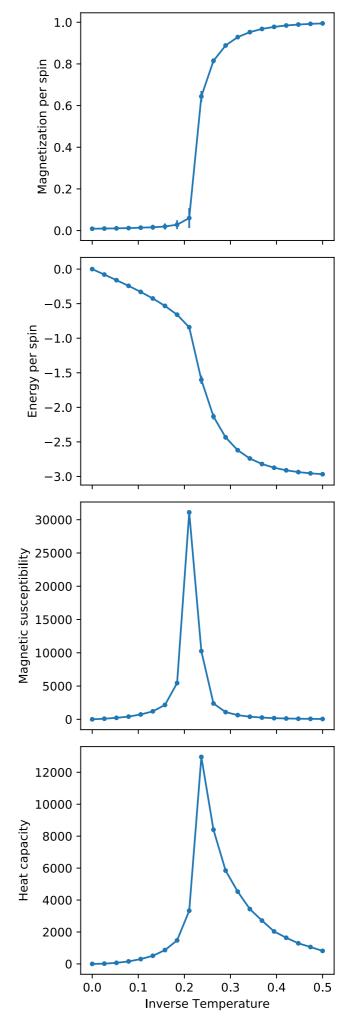
Show code

Compare with python

Results

Parameters: L=20 $N_{thermalization}=100L^{3}$ $N_{sample}=3000$ $N_{subsweep}=3L^{3}$

- $\cdot \quad 0.2 < 1/T_c = \beta_c < 0.25$
- Larger error at T_c \rightarrow critical slowing down
- Larger system size: more abrupt phase transition
 - \rightarrow increased peaks of χ and C_V



Exercise sheet 2

Critical exponents

Behavior near T_c

- $M(T) \propto (T_c T)^{\beta}, T < T_c$
- $M(T = T_c, H) \propto H^{1/\delta}$
- $\chi(T) \propto |T_c T|^{-\gamma}$
- $C_V(T) \propto |T_c T|^{-\alpha}$
- $\xi(T) \propto |T_c T|^{-\nu}$

Exponent	d = 2	<i>d</i> = 3
α	0	0.110(1)
β	1/8	0.3265(3)
γ	7/4	1.2372(5)
δ	15	4.789(2)
η	1/4	0.0364(5)
ν	1	0.6301(4)

Describe behavior near phase transition

Scaling laws

The 6 critical exponents are connected:

 $\alpha + 2\beta + \gamma = 2$ (Rushbrooke), $\gamma = \beta(\delta - 1)$ (Widom), $\gamma = (2 - \eta)\nu$ (Fisher), $2 - \alpha = d\nu$ (Josephson),

Number of independent critical exponents: 2

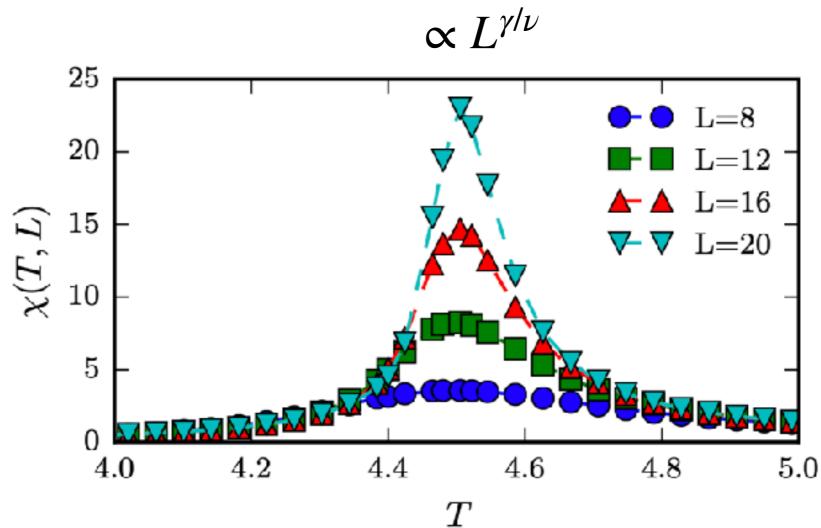
Critical exponents only depend on fundamental system properties such as dimension or symmetries.

→ universal

All systems belonging to a certain universality class share the same critical exponents

Finite size scaling analysis

- χ , C_V and ξ diverge at T_c for $L \to \infty$
- Finite size:



Finite size scaling analysis

Problem:

• We have:

MC program for small Ising systems

• We want:

Behavior of large systems (thermodynamical limit)

Approach:

- Simulate small systems of different size
- Find critical exponents

→ Critical exponents allow predictions for large systems

Exercise sheet 2

ETH	Computational Statistical Physics	FS 2020
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	Exercise sheet 02	Oded Zilberberg

Exercise 1. Ising model: Finite size scaling analysis

Goal: In numerical simulations we are only able to tackle relatively small system sizes whereas real physical systems are usually much larger. Finite size scaling analysis is a technique which allows us to get good approximations for the thermodynamic limit.

Task 1: Use your program of the first exercise sheet to perform simulations of the 3D Ising system for different system sizes to determine the critical exponents γ and ν .

Hint: Use the finite size scaling relation of the magnetic susceptibility and the fact that the critical temperature is given by $T_c \approx 4.51$.

You might find the following points useful:

- You can get a first estimate for the ratio γ/ν by plotting χ_{max} as a function of the system size.
- Vary γ/ν and $1/\nu$ until you get the best possible data collapse. Judge the quality of the data collapse "by eye".

Task 2 (OPTIONAL): Repeat the same process for the specific heat.

Instructions

- Simulate small 3D Ising systems of different size
- Use the scaling relation $\chi(T,L) = L^{\gamma/\nu} F_{\chi} \left((T-T_c) L^{1/\nu} \right)$

to determine γ and ν

-
$$\max_T \chi(T,L) = \chi(T=T_c,L) \propto L^{\gamma/\nu}$$

→ plot max χ as a function of L (logarithmic) to obtain γ/ν plot $\chi(T,L)L^{-\gamma/\nu}$ as a function of $(T - T_c)L^{1/\nu}$

 \rightarrow vary γ and ν to obtain the best data collapse