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Exercise 1. Cluster algorithms

Goal: Cluster algorithms can be used to reduce the critical slowing down substantially.

This week you have to simulate either the 3D Ising model or the Potts model with

q = 2 using a cluster algorithm. You may choose either the Swendsen-Wang or the

Wol↵ algorithm.

Task 1: Find the connection probability in the Ising model.

Hint: In the Potts model the probability for connecting sites in the same state is p = 1 �
exp(��J).

Task 2: Implement either the Swendsen-Wang or the Wol↵ algorithm. Check your code by

plotting the binder cumulant or the magnetic susceptibility around Tc.

Task 3 (OPTIONAL): Implement the other algorithm as well.

Task 4: Compare the performance of the algorithms and show that in the cluster algorithms

the critical slowing down is substantially reduced. Measure the runtime and compute the linear

autocorrelation time ⌧ (relative to the observable E or M) of the cluster algorithm and compare

it to the Metropolis algorithm. Report a table with ⌧ and the Monte Carlo speed defined as

MCspeed =
sweeps

time
· 1
⌧

for at least three temperature values, say Tc, Tc + 1, Tc � 1, and fixed size. Make another table

with the temperature fixed at Tc and varying lattice size. Interpret the results.

Hint: Remember that you can extrapolate ⌧ from the autocorrelation series

⇢XX(�t) =

⌦
(Xt � X̄)(Xt+�t � X̄)

↵
t

�2
.
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Implementation

Connection probability Ising model: p = 1 − e−2βJ

Wolff: 
• Main structure very similar to Metropolis code 
•  No subsweeps: 

• We flip ~N spins in 1 step 
• We want to find autocorrelation time 

• Build cluster and flip it 
• start from randomly picked spin → flip it 
• Add next neighbors with probability  (if they have 

the same state) → flip them 
• No need to save the cluster 
• Recursive

p



Implementation

Autocorrelation time: 
• Calculate autocorrelation series from sampled 

magnetization or energy 
• Find cutoff 
• Use  to find the autocorrelation time ∼ e−t/τ τ

Metropolis: 
• Use code from Ex. 1 
• Number of subsweeps: N=L3

Measure runtime of sampling



Code



Results

Metropolis Wolff



Results

� L runtime ⌧ MCspeed

0.28 10 141.3 2.4 294
0.25 10 125. 2 5.9 163
0.22 10 171. 0 30.4 19
0.20 10 161.2 7.2 86
0.18 10 160.5 3.3 188

� L runtime ⌧ MCspeed

0.28 10 102.6 0.96 1017
0.25 10 74.2 1.74 777
0.22 10 17.6 5.61 1016
0.20 10 2.3 4.81 8855
0.18 10 1.2 7.57 10721

Table 1: Runtime, autocrorrelation time and MCspeed of M as a function of temperature for
Metropolis (left) and Wol↵ algorithm (right).

� L runtime ⌧ MCspeed

0.22 8 77.3 19.1 68
0.22 10 171.0 30.4 19
0.22 12 217.6 41.6 11
0.22 16 534.5 74.4 2

� L runtime ⌧ MCspeed

0.22 8 14.0 4.57 1558
0.22 10 17.6 5.61 1016
0.22 12 25.6 6.48 603
0.22 16 53.5 8.78 215

Table 2: Runtime, autocrorrelation time and MCspeed of M as a function of system size at Tc

for metropolis (left) and Wol↵ algorithm (right).

reason we need to cut o↵ the autocorrelation series when we calculate the slope of log(⇢XX)
which gives us �1/⌧ .

In table 1, 2 the results for di↵erent temperatures and di↵erent system size are shown. We can
observe that ⌧ is increasing at the critical temperature for the Metropolis algorithm (critical
slowing down). For the Wol↵ algorithm there is only a small increase when � < �c, since here
the clusters are small and hence less spins are flipped in a single (sweep) step. However, smaller
clusters are built faster and hence the runtime at this temperatures is lower. Looking at the
MCspeed we find that the calculation is slowed down for � > �c.

In table 2 we look at the dependence on the system size at the critical temperature. We find
that both methods slow down as expected since more cells need to be updated. Looking at
MCspeed we find that the Wol↵ algorithm outperforms Metropolis.

3



Exercise sheet 4



Canonical ensemble

System connected to temperature bath 
• Constant number of particles 
• Constant volume 
• Constant temperature 

Probability of phase space configuration : 
           

Partition function: 
           

→ Metropolis, Wolff, Swendsen-Wang

X
ρ(X) =

1
Zc

exp(−E(X)/kBT )

Zmc = ∑
X

exp(−E(X)/kBT )



Microcanonical ensemle

Isolated system: 
• Constant number of particles 
• Constant volume 
• Constant energy


Probability of phase space configuration : 
           

Partition function: 
          

X
ρ(X) =

1
Zmc

δ(H(X) − E)

Zmc = ∑
X

δ(H(X) − E)



Creutz algorithm

• Condition of energy conservation slightly relaxed 
• Energy fluctuations allowed  
• Idea: 

• Introduce demon 
• Small reservoir of energy  
• Can store maximum energy 

ED
Emax



Creutz algorithm

Temperature? 
• Plot histogram of  

•   
• Fit

ED
P(ED) ∝ exp(−ED/kBT)
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Exercise 1. Microcanonical Monte Carlo

Goal: So far, we treated the Ising model in the canonical ensemble (fixed temperature)
where the samples were drawn according to the Boltzmann distribution. In this week’s
exercise we are going to perform a microcanonical Monte Carlo simulation of the 3D
Ising model according to the Creutz algorithm (M. Creutz, Phys. Rev. Lett., 50, 1411,
(1983)).

The Creutz algorithm is defined in the following way:

1. Start with an initial spin configuration x of a given energy E and define a container energy

Ed (demon energy) such that Emax � Ed � 0.

2. Choose a spin at random and flip it to obtain the configuration y.

3. Calculate the energy di↵ference �E between the configurations x and y.

4. If Emax � Ed ��E � 0 choose a new spin and repeat the process. If not revert the spin

flip and choose a new spin.

Task 1: Modify your program of the first exercise to simulate a microcanonical Ising system

using the Creutz algorithm.

Task 2: Determine the corresponding temperature T using

P (Ed) ⇠ e
� Ed

kBT .

Task 3: Compute T for di↵erent E. Plot energy and magnetization as a function of temperature

and compare your results to the results obtained with the Metropolis algorithm.

Task 4: Repeat the above tasks for di↵erent system sizes and compare your results.

Task 5 (OPTIONAL): What happens in the case Emax = 0 (Q2R algorithm)? Discuss the

issue of ergodicity.
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Instructions

Structure for simulation at energy E: 
1. Initialize a configuration with all spins in the state +1 
2. Increase the energy until E is reached 

• Randomly flip spins that increase the energy 
3.  Sampling using the Creutz algorithm 

• Start with  
• Accept spin flips with  
• Update  

4.   Find the temperature using the distribution of  
•  

ED = 0
0 ≤ ED − ΔE ≤ Emax

ED
ED

P(ED) ∝ exp(−ED/kBT)


