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Exercise 1. Microcanonical Monte Carlo

Goal: So far, we treated the Ising model in the canonical ensemble (fixed temperature)
where the samples were drawn according to the Boltzmann distribution. In this week’s
exercise we are going to perform a microcanonical Monte Carlo simulation of the 3D
Ising model according to the Creutz algorithm (M. Creutz, Phys. Rev. Lett., 50, 1411,
(1983)).

The Creutz algorithm is defined in the following way:

1. Start with an initial spin configuration x of a given energy E and define a container energy

Ed (demon energy) such that Emax � Ed � 0.

2. Choose a spin at random and flip it to obtain the configuration y.

3. Calculate the energy di↵ference �E between the configurations x and y.

4. If Emax � Ed ��E � 0 choose a new spin and repeat the process. If not revert the spin

flip and choose a new spin.

Task 1: Modify your program of the first exercise to simulate a microcanonical Ising system

using the Creutz algorithm.

Task 2: Determine the corresponding temperature T using

P (Ed) ⇠ e
� Ed

kBT .

Task 3: Compute T for di↵erent E. Plot energy and magnetization as a function of temperature

and compare your results to the results obtained with the Metropolis algorithm.

Task 4: Repeat the above tasks for di↵erent system sizes and compare your results.

Task 5 (OPTIONAL): What happens in the case Emax = 0 (Q2R algorithm)? Discuss the

issue of ergodicity.
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Implementation

Structure:

1. Initialize a configuration with all spins in the state +1 
2. Increase the energy until E is reached 

• Randomly flip spins that increase the energy 
3.  Sampling using the Creutz algorithm 

• Start with  
• Accept spin flips with  
• Update 

ED = 0
0 ≤ ED − ΔE ≤ Emax

ED + = ED

We want:

• Simulate and sample system at energy E 
• Energy fluctuation 0 ≤ ED ≤ Emax



Implementation

Structure:

1. Initialize a configuration with all spins in the state +1 
2. Increase the energy until E is reached 

• Randomly flip spins that increase the energy 
3.  Sampling using the Creutz algorithm

→ Repeat at different energy E 

Analysis:

• Find temperature corresponding to energy E  

•  
• Plot  and 

P(ED) ∝ exp(−ED/kBT)
E(T) M(T)



Code



Results



Results
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Heisenberg model

The Heisenberg model can be seen as a generalization of the Ising model, where a more realistic
model of classical magnetization is represented by the Hamiltonian

H = �J

X

hi,ji

~Si · ~Sj , (1)

where ~Si 2 S2 ⇢ R3 belongs the surface of a 3-sphere.

While for the XY model (spins in S1) it is advantageous to use polar coordinates, it is unclear and
possibly system dependent if in the 3D spin case the added complexity and FLOP introduced
by spherichal coordinates, justifies the memory savings.

Implement a MC simulation of the Heisemberg model with a Metropolis algorithm. Outside a
few changes in the update probability computation and the representation of you cluster, you
should not need to modify the code from previous exercises much. Remember to normalize your
vectors if you use a cartesian representation.

Taks 1: Compute the critical temperature for J = 1. You can use either the binder cumulants,
or the magnetic susceptibility. You should find Tc ⇡ 1.443.

Task 2: Compute the autocorrelation time, either for E or | ~M |, at Tc and find the critical
dynamical exponent given by the relation ⌧ / L

zc .

The cluster algorithm can be extended to system with spins of arbitrary dimensions, with the
trick of considering reflections around a random plane at each MC step. For each step select
a random unit vector ~r which is chosen to be orthogonal to the reflection plane. Decide if you
want to implement Swedsen-Wang or Wol↵, grow a cluster with bond probability

pi,j = 1� exp
h
�2�(~Si · ~r)( ~Sj · ~r)

i
(2)

and flip the spins as
~Si

0
= ~Si � 2~r (~Si · ~r). (3)

Task 3: Repeat the computation of Tc and zc using the Swendsen-Wang or Wol↵ algorithm.

Unsupervised machine learning

We can use PCA and k-means to investigate condensed matter systems. One of the paradigmatic
systems is the two-dimensional ferromagnetic Ising model. It has two phases separated by a well-
known critical temperature at Tc = 2.26.

Task 1: Generate 103 � 104 samples of L-by-L Ising systems using Metropolis or a cluster
Monte Carlo method, with L = 10 for smaller systems, and L = 32 for larger systems at di↵erent
temperatures.
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Task 2: Perform PCA on these data points and find the 2 directions u1 and u2 with the largest
variance. Make a scatter plot of the configurations in the u1-u2 plane. Describe and interpret
your results. What is the di↵erence between the small and the large system?

Hint: Use fit(PCA, X; maxoutdim = 2) of the package MultivariateStats.

We can use k-means to determine the boundary between the three (two) phases, so that when
we are given a new data point, we can determine which phase it belongs to.

Task 3: Find the three stabilized centroids using k-means and divide the u1-u2 plane into
three phase regions.

Hint: Use kmeans(X, 3) of the package Clustering.

A very interesting phenomena can be observed for the data point in u1 and u2 direction.

Task 4 a): Plot the mean value of the absolute value of the data points in the u1 direction
as a function of temperature and compare it with the mean magnetization of the corresponding
spin configurations.

Task 4 b): Plot the mean value of the absolute value of the data points in the u2 direction
as a function of temperature and compare it with the susceptibility of the corresponding spin
configurations.
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Heisenberg model



Instructions: Heisenberg model

Metropolis algorithm: 
• Change cluster representation 
• Spin update: 

•  ,  is new random spin on  
• Find new   
• Change update probability 

• Keep structure 
• Thermalization, subsweeps … 

• Magnetization  ,  

⃗S old → ⃗S new
⃗S new S2

ΔE

⃗M = ∑
i

⃗mi | ⃗M |



Instructions: Heisenberg model

• Find critical temperature 
• Compute the autocorrelation of  time at  
• Find the critical dynamical exponent  

•

| ⃗M | Tc
zc

τ ∝ Lzc



Wolff 
• Change cluster representation 
• Spin update: reflect spin 
• Build cluster: 

• Pick random spin (i,j,k) 
• Pick random vector  

• Bond probability:  
•   
• Repeat for neighbors 

• Keep structure 
• Thermalization … 

⃗r

⃗S old → ⃗S new = ⃗S old − 2 ⃗r( ⃗S old ⃗r)

Instructions: Heisenberg model



Instructions: Heisenberg model

• Find critical temperature 
• Compute the autocorrelation of  time at  
• Find the critical dynamical exponent  

•

| ⃗M | Tc
zc

τ ∝ Lzc



Unsupervised machine learning  
PCA and k-means

Motivation PCA



Unsupervised machine learning  
k-means

Algorithm k-means

Centroids



Instructions: Unsupervised machine learning

2D Ising model 
• Generate spin configurations  

• Different system size and temperature 
• Store magnetization and susceptibility  
• Use code from Ex 1 or 3 

• Perform PCA to find directions  and  
• Make scatter plot in -  plane 
• Interpret results 

• K-means: find centroids 
• You can determine phase of new configurations 

u1 u2
u1 u2



Instructions: Unsupervised machine learning

• Plot  as a function of T: 
• : data points in  directions 
• Compare values with magnetization 

⟨ |p1 |⟩
p1 u1

p1

p2

T1 T2 T3



Instructions: Unsupervised machine learning

• Plot  as a function of T: 
• : data points in  directions 
• Compare values with magnetization 

• Plot  as a function of T: 
• : data points in  directions 
• Compare values 

     with susceptibility

⟨ |p1 |⟩
p1 u1

⟨ |p2 |⟩
p2 u2

p1

p2

T1 T2 T3


