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Heisenberg model

The Heisenberg model can be seen as a generalization of the Ising model, where a more realistic
model of classical magnetization is represented by the Hamiltonian

H = �J

X

hi,ji

~Si · ~Sj , (1)

where ~Si 2 S2 ⇢ R3 belongs the surface of a 3-sphere.

While for the XY model (spins in S1) it is advantageous to use polar coordinates, it is unclear and
possibly system dependent if in the 3D spin case the added complexity and FLOP introduced
by spherichal coordinates, justifies the memory savings.

Implement a MC simulation of the Heisemberg model with a Metropolis algorithm. Outside a
few changes in the update probability computation and the representation of you cluster, you
should not need to modify the code from previous exercises much. Remember to normalize your
vectors if you use a cartesian representation.

Taks 1: Compute the critical temperature for J = 1. You can use either the binder cumulants,
or the magnetic susceptibility. You should find Tc ⇡ 1.443.

Task 2: Compute the autocorrelation time, either for E or | ~M |, at Tc and find the critical
dynamical exponent given by the relation ⌧ / L

zc .

The cluster algorithm can be extended to system with spins of arbitrary dimensions, with the
trick of considering reflections around a random plane at each MC step. For each step select
a random unit vector ~r which is chosen to be orthogonal to the reflection plane. Decide if you
want to implement Swedsen-Wang or Wol↵, grow a cluster with bond probability

pi,j = 1� exp
h
�2�(~Si · ~r)( ~Sj · ~r)

i
(2)

and flip the spins as
~Si

0
= ~Si � 2~r (~Si · ~r). (3)

Task 3: Repeat the computation of Tc and zc using the Swendsen-Wang or Wol↵ algorithm.

Unsupervised machine learning

We can use PCA and k-means to investigate condensed matter systems. One of the paradigmatic
systems is the two-dimensional ferromagnetic Ising model. It has two phases separated by a well-
known critical temperature at Tc = 2.26.

Task 1: Generate 103 � 104 samples of L-by-L Ising systems using Metropolis or a cluster
Monte Carlo method, with L = 10 for smaller systems, and L = 32 for larger systems at di↵erent
temperatures.
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Implementation - Heisenberg

We want: 
• adapt the Metropolis code to the Heisenberg Hamiltonian 
•  Compute the autocorrelation time and the critical 

dynamical exponent 
• Do the same for a cluster algorithm 

Changes Metropolis: 
•  ,  is new random spin on  

Changes Wolff 
• Spin is reflected 
• New bond probability

⃗S old → ⃗S new
⃗S new S2



Implementation - Heisenberg

Critical dynamical exponent: 
•  
•  can be found like in exercise 3 
• Calculate  at  for different  
• Plot  vs.  

• Slope gives 

τ ∝ Lzc

τ
τ Tc L

log L log τ
zc



Code



Results

Figure 1: Magnetization, energy, magnetic susceptibility and heat capacity for di↵erent temper-
atures and L = 8 (left: Metropolis, right: Wol↵).
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Metropolis: 
• zc ≈ 1.8

Wolff: 
• zc ≈ 0.8



Implementation - Unsupervised ML

We want: 
• Use PCA to find order parameter 
• Use k-means to find centers of the clusters 

Implementation 
• We perform PSA using MultivariateStats to find the 2 

most important directions 
• Use transformed data to find the average at different 

temperatures 
• Use k-means from Clustering  
• Divide the plane into 3 regions



Code



Results

Figure 2: Scatter plot of the data points and the centroids for L = 10 (left) and L = 32
(right). The black lines divide the plane into three regions belonging to the corresponding to
the centroids.
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Results
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Figure 3: h|p1|i/L and the magnetization as a function of temperature T for L = 10 (left) and
L = 32 (right).
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Figure 4: h|p2|i and the susceptibility as a function of temperature T for L = 10 (left) and
L = 32 (right).
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Restricted Boltzmann Machine
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Restricted Boltzmann Machine

Training: 
• Update weights and biases according to training data 
• Contrastive divergence: 

vector from 
 training data

update h go back and forth 
 (update) k times



Feed forward network
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Feed forward network

Training: 
• Update weights and biases 
• Minimize cost function 

output correct/expected  
output



Feed forward network

Training: 
• Update weights and biases 
• Minimize cost function 
• Gradient descent 
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Exercise 1. Generating Ising configurations with the Restricted Boltzmann Ma-
chine

Goal: In this exercise we are going to learn a) what Restricted Boltzmann Machines

are, b) how they can be trained and c) how they can be used to generate Ising configu-

rations at a certain temperature.

Task 1: Read carefully through chapter 1.9 of the lecture notes and familiarize yourself with the

concepts of a neuron, the Hopfield Network and the Boltzmann Machine.

A Restricted Boltzmann Machine (RBM) is a neural network consisting of two layers of neurons
where every neuron of one layer is connected with every neuron of the other layer (inter-layer
connections between every two neurons). Within the same layer neurons are not connected (no
intra-layer connections). A schematic is presented in figure 1.

v
1

v
2

v
Nv

h
1

h
2

v
3

h
Nh

w
11

Figure 1: Schematic of a RBM. Visible layer (green). Hidden layer (blue).

One of the two layers is called visible layer while the other one is called hidden layer. Interacting
with the machine (input and output) can only occur over the visible layer. The hidden layer
is not directly accessible. Moreover, the neurons are binary, i.e., they can only take one of two
possible values - either 0 or 1.

Let’s call the number of visible nodes Nv and the number of hidden nodes Nh. Furthermore,
call the current value of the j-th node in the visible layer vj and the i-th node in the hidden
layer hi. With these definitions we are able to have a closer look at the dynamics of the system.
Given v = (v1, .., vNv) the value of the i-th node in the hidden layer is set to 1 with probability

p(hi = 1|v) = �
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Instructions

• Read carefully through chapter 1.9 
• Make sure you understand the concepts 
• Implement contrastive divergence 
• Train the RBM and investigate the generated samples 

• Build up the network 
• Implement your network in measuring_temperature.py 
• Determine temperature of the samples generated by 

the RBM



Python skeleton


