Exercise 1. Cluster algorithms

Goal: Cluster algorithms can be used to reduce the critical slowing down substantially. This week you have to simulate either the 3D Ising model or the Potts model with q = 2 using a cluster algorithm. You may choose either the Swendsen-Wang or the Wolff algorithm.

Task 1: Find the connection probability in the Ising model.

Hint: In the Potts model the probability for connecting sites in the same state is $p = 1 - \exp(-\beta J)$.

Task 2: Implement either the Swendsen-Wang or the Wolff algorithm. Check your code by plotting the binder cumulant or the magnetic susceptibility around T_c .

Task 3 (OPTIONAL): Implement the other algorithm as well.

Task 4: Compare the performance of the algorithms and show that in the cluster algorithms the critical slowing down is substantially reduced. Measure the runtime and compute the linear autocorrelation time τ (relative to the observable E or M) of the cluster algorithm and compare it to the Metropolis algorithm. Report a table with τ and the Monte Carlo speed defined as

$$MC_{speed} = \frac{sweeps}{time} \cdot \frac{1}{\tau}$$

for at least three temperature values, say T_c , $T_c + 1$, $T_c - 1$, and fixed size. Make another table with the temperature fixed at T_c and varying lattice size. Interpret the results.

Hint: Remember that you can extrapolate τ from the autocorrelation series

$$\rho_{XX}(\Delta t) = \frac{\left\langle (X_t - \bar{X})(X_{t+\Delta t} - \bar{X}) \right\rangle_t}{\sigma^2}.$$

Solution. In this exercise we compare the Metropolis algorithm with a cluster algorithm. In the following we will investigate the Wolff algorithm but Swendsen-Wang would give a similar behavior.

The connection probability for the Ising model is $p = 1 - \exp(-2\beta J)$ since the spin configurations are ± 1 instead of 0, 1 as in the Potts model.

For both algorithms we initialize the system in a random configuration and thermalize the system. One (sweep) step in the Wolff algorithm will flip a cluster of $\sim N$ spins. For comparability a sweep in the Metropolis algorithm should also flip $\sim N$ spins, hence we pick randomly N spins and attempt to flip them. The system is thermalized over 100 sweeps and then measured 100000 times with a single sweep between each measurement.

The results for the binder cumulant and the magnetic susceptibility for L = 10 are shown in Fig. 1. We see that the results agree.

Next we want to compare the performance of the algorithms in terms of calculation time, autocorrelation time and MC_{speed} . For this we measure the calculation time of the sampling after the thermalization. The autocorrelation ρ_{XX} is calculated from the measurements of M or E. The autocorrelation time τ can be extracted from the logarithm of the autocorrelation ρ_{XX} . Be aware that the numerically calculated autocorrelation series always sums up to 1/2 (or -1/2 if

Figure 1: Magnetic susceptibility and Binder cumulant calculated by the Metropolis (left) and the Wolff algorithm (right).

β	L	runtime	τ	MC_{speed}	β	L	runtime	au	MC_{speed}
0.28	10	141.3	2.4	294	0.28	10	102.6	0.96	1017
0.25	10	125. 2	5.9	163	0.25	10	74.2	1.74	777
0.22	10	171. 0	30.4	19	0.22	10	17.6	5.61	1016
0.20	10	161.2	7.2	86	0.20	10	2.3	4.81	8855
0.18	10	160.5	3.3	188	0.18	10	1.2	7.57	10721

Table 1: Runtime, autocorrelation time and MC_{speed} of M as a function of temperature for Metropolis (left) and Wolff algorithm (right).

β	L	runtime	τ	MC_{speed}	β	L	runtime	au	MC_{speed}
0.22	8	77.3	19.1	68	0.22	8	14.0	4.57	1558
0.22	10	171.0	30.4	19	0.22	10	17.6	5.61	1016
0.22	12	217.6	41.6	11	0.22	12	25.6	6.48	603
0.22	16	534.5	74.4	2	0.22	16	53.5	8.78	215

Table 2: Runtime, autocrorrelation time and MC_{speed} of M as a function of system size at T_c for metropolis (left) and Wolff algorithm (right).

the 0th element is omitted). For this reason we need to cut off the autocorrelation series when we calculate the slope of $\log(\rho_{XX})$ which gives us $-1/\tau$.

In table 1, 2 the results for different temperatures and different system size are shown. We can observe that τ is increasing at the critical temperature for the Metropolis algorithm (critical slowing down). For the Wolff algorithm there is only a small increase when $\beta < \beta_c$, since here the clusters are small and hence less spins are flipped in a single (sweep) step. However, smaller clusters are built faster and hence the runtime at this temperatures is lower. Looking at the MC_{speed} we find that the calculation is slowed down for $\beta > \beta_c$.

In table 2 we look at the dependence on the system size at the critical temperature. We find that both methods slow down as expected since more cells need to be updated. Looking at MC_{speed} we find that the Wolff algorithm outperforms Metropolis.