
Computational Statistical Physics

Solution sheet 6
FS 2020

Oded Zilberberg

Exercise 1. Generating Ising configurations with the Restricted Boltzmann Ma-
chine

Goal: In this exercise we are going to learn a) what Restricted Boltzmann Machines are,
b) how they can be trained and c) how they can be used to generate Ising configurations at a
certain temperature.

Task 1: Read carefully through chapter 1.9 of the lecture notes and familiarize yourself with the concepts
of a neuron, the Hopfield Network and the Boltzmann Machine.

A Restricted Boltzmann Machine (RBM) is a neural network consisting of two layers of neurons where
every neuron of one layer is connected with every neuron of the other layer (inter-layer connections be-
tween every two neurons). Within the same layer neurons are not connected (no intra-layer connections).
A schematic is presented in figure 1.

v
1

v
2

v
Nv

h
1

h
2

v
3

h
Nh

w
11

Figure 1: Schematic of a RBM. Visible layer (green). Hidden layer (blue).

One of the two layers is called visible layer while the other one is called hidden layer. Interacting with
the machine (input and output) can only occur over the visible layer. The hidden layer is not directly
accessible. Moreover, the neurons are binary, i.e., they can only take one of two possible values - either
0 or 1.

Let’s call the number of visible nodes Nv and the number of hidden nodes Nh. Furthermore, call the
current value of the j-th node in the visible layer vj and the i-th node in the hidden layer hi. With these
definitions we are able to have a closer look at the dynamics of the system. Given v = (v1, .., vNv

) the
value of the i-th node in the hidden layer is set to 1 with probability

p(hi = 1|v) = σ

 Nv∑
j=1

wijvj + bi


else it is set to 0. The coefficients wij are called weights and the coefficients bi are called biases (of the

1



hidden layer). σ(x) is the sigmoid function

σ(x) =
1

1 + e−x

which maps any real number to the interval (0, 1). Similarly, given the values h = (h1, .., hNh
) of the

hidden layer the value of the j-th visible node is determined by

p(vj = 1|h) = σ

(
Nh∑
i=1

wjihi + aj

)

where aj are the biases of the visible layer. Note that the weights are symmetric, i.e., wij = wji. Due to
these update rules the RBM is classified as a stochastic model.

Task 2: State and explain the differences between a Hopfield Network, a Boltzmann Machine and a
Restricted Boltzmann Machine.

In the following we are going to use the RBM to generate 2D Ising configurations with L = 32 at a certain
temperature T . Therefore, we choose the number of visible nodes to be Nv = 32× 32.

Before samples can be drawn the machine has to be trained. By training we mean updating the weights
and biases according to our training data.1 This is done via contrastive divergence. The update rule for
the weights is given by

wij → wij − ε
(
〈vjhi〉data − 〈vjhi〉kmodel

)
where ε is a so-called learning rate. The expectation values are understood to be averages over the whole
set of training data.2 The quantity (vjhi)data is calculated by taking a vector v from the training data and
computing the corresponding vector h as described above. For the quantity (vjhi)

k
model one has to take

a vector from the training data, compute the corresponding vector h, compute the new v and perform k
more back-and-forth operations. More information about the contrastive divergence can be found here:
https: // arxiv. org/ pdf/ 1803. 08823. pdf (p. 90 ff.).
For completeness, the update rules for the biases are given by

aj → aj − ε
(
〈vj〉data − 〈vj〉kmodel

)
bi → bi − ε

(
〈hi〉data − 〈hi〉kmodel

)
.

For the following tasks we provide you with a python project which is missing some functionality that
you have to implement. At first, the training data is extracted and brought into the right shape (imple-
mentation found in ”ising main.py”). Then, the RBM is set up and trained for one fixed temperature
T (implementation found in ”my RBM tf2.py”). Finally, new Ising configurations are generated and the
magnetization and energy are plotted in ”plotting.py”.

Task 3: Implement the function ”contr divergence” in the class ”RBM” in the file ”my RBM tf2.py” as
described above.

Hint: You might find the following functions helpful:

• tensorflow.sigmoid

• tensorflow.add

• tensorflow.tensordot

• tensorflow.transpose

1 We provide you with 1000 Ising configurations for three different temperatures. They are found in the file
”ising data L32.h5”.

2 Note that this procedure is in general very slow because the averages are always computed over the whole
training data. Instead of performing this kind of optimization for the weights and biases it is beneficial to divide
the whole set of training data into a set of mini-batches and compute the averages only over these mini-batches.

2

https://arxiv.org/pdf/1803.08823.pdf


• tensorflow.reshape

Check out the tensorflow documentation (https: // www. tensorflow. org/ api_ docs/ python ) for more
information.

Task 4: Use the training data stored in ”data/ising/ising data L32.h5” to find the optimal weights
and biases for your RBM (you can also generate additional data using the file ”wolff.jl”). (Disclaimer:
Training the machine may take quite a while depending on your computer.)

Hint: You can use the file ising main.py to train the RBM. The weigths will be stored in results/models/...
.

Once the machine is trained it can be used to generate new samples. This can be done in the following
way:

1. Set the nodes in the visible layer to random values (either 0 or 1).

2. Let the machine evolve i.e. go several times back and forth between the visible and hidden layer.

3. Read out the nodes in the visible layer. This is the desired sample.

Task 5: Use the RBM to obtain new Ising configurations. Plot the energy and the magnetization as a
function of sampling time.

Hint: You can use the file plotting.py .

Task 6: Repeat Task 4 and Task 5 for at least two more temperatures.

Exercise 2. Classifying temperatures of Ising configurations with a feed-forward
network

Goal: Here, we are going to learn about another kind of neural network. This time we are
not going to generate new Ising configurations but instead determine the temperatures of given
Ising configurations.

Consider a neural network made up of 4 layers as displayed in figure 2.

x
1

x
2

x
Nv

h
1

(1)

h
Nh1

(1)

h
1

(2)

h
Nh2

(2)

y
1

y
4

Input (visible)

Output (visible)

hidden hidden

Figure 2: Schematic of a feed-forward network with two hidden layers. Visible layers (green). Hidden
layers (blue).

3

https://www.tensorflow.org/api_docs/python


The two outer layers (used for input and output) are visible while the two inner layers are hidden. In
contrast to the RBM there is no back-and-forth flow of information between the visible and hidden layers.
Instead, information flows from the input to the output layer. That is why this network is called a feed-
forward network. Furthermore, we assume that the nodes are not binary anymore but can take continuous
values between 0 and 1 and that the dynamics of the system is given by

h
(1)
k = σ

(∑
l

w
(1)
kl xl + b

(1)
k

)

h
(2)
j = σ

(∑
k

w
(2)
jk h

(1)
k + b

(2)
j

)

yi = σ

∑
j

w
(3)
ij h

(2)
j + b

(3)
i


where σ(x) is again the sigmoid function. Due to the fact that the values of the nodes are uniquely defined
(not set with a certain probability as in the RBM) the network is called deterministic.

Since the goal is to map an Ising configuration to its corresponding temperature the input layer is chosen
to have 32 × 32 nodes while the ouput layer consists of 3 nodes (one for every possible temperature we
would like to detect). Thus, the values of the nodes in the output layer can be interpreted as probabilities
that the system has a certain temperature.

Training the machine means again that the weights and biases have to be adjusted. This is done in a
way such that the so-called cost function (also loss function) is minimized. Given some input i(d) with
expected output o(d) the (mean-squared) cost of this single training example is defined as

C(d) =

4∑
i=1

(
y
(d)
i − o(d)i

)2
.

With this the total cost function C is defined as the average of all costs over the whole training data set3

C
(
w(1), b(1), w(2), b(2), w(3), b(3)

)
=

1

Ndata

Ndata∑
d=1

C(d).

The most straightforward way to do the updates of the weights and biases is by using a steepest descent
method. However, such a method is usually slow because one has to average over all data of the training
set in every step. Therefore, similar to Exercise 1, we randomly divide the set of training data into
mini-batches and compute the gradient only for one of these mini-batches in one step. This procedure is
known as stochastic gradient descent. The update rule can be stated in the following form:

w(1)

b(1)

w(2)

b(2)

w(3)

b(3)

→


w(1)

b(1)

w(2)

b(2)

w(3)

b(3)

− ε

∂w(1)

∂b(1)
∂w(2)

∂b(2)
∂w(3)

∂b(3)

C.

The gradient ∇C of the cost function can be computed via backpropagation which is nothing else but the
chain rule.

Task 1: State and derive the analytical expressions for ∂
w

(3)
i,j
C and ∂

w
(2)
i,j
C.

Task 2: Build up the network and train your machine with the test data provided in ”ising data L32.h5”.

Hint: You may use the python skeleton ”measuring temperature.py”. It will store the weights in train-
ing 1/... .

3 Note that in our case Ndata = 1000.

4



Task 3: Use the samples you generated in exercise 1 and determine the corresponding temperatures using
the network from this exercise.

Hint: You can use the file plotting.py and extend it to measure the temperature. To load the weights use:
model = create model()
model.load weights(’Training 1/cp.ckpt’)

Task 4 (optional): In the end machine learning is about trial and error, i.e., finding the best model
to describe and successfully predict the kind of data you consider. Therefore, modify your feed-forward
network and see which modifications yield the best results. There are several things you can change. To
mention only a few:

• Number of hidden layers

• Number of nodes in the hidden layers

• Activation function/non-linearity (instead of the sigmoid function one can use the ReLU, Softmax,
etc.)

• Cost function (instead of the mean-squared cost function one can use the categorical cross-entropy,
etc.)

• ...

Feel free to try anything which comes to your mind!

Solution. Exercise 1: You can find the current version of the python code at:
https://github.com/dngfra/Restricted-Boltzmann-Machines.

Using this code we first create and train a RBM on T = 2. Figure 3 shows an example for a
generated sample from random noise. Since T < Tc the corresponding training configurations
belong to the ordered phase. As expected (in the generated sample) most of the spins are
pointing in the same direction.

Figure 3: Generated sample at T = 2 from random noise (10000 Markov steps).

In figure 4 we plot the magnetizations (per spin) of 200 generated samples and compare them
to the training data. We trained the RBM separately for 3 different temperatures. We find that

5

https://github.com/dngfra/Restricted-Boltzmann-Machines


Figure 4: Absolute magnetizations of the training data as well as of the generated samples.

the magnetization of the samples generated by the RBM fluctuates around the mean value of
the training data.

Exercise 2: We set up a FFN and train it to classify Ising configurations according to one
of three given temperatures (T ≈ 1.0, T ≈ 2.2, T ≈ 3.0). Determining the temperatures of
the Ising configurations generated with the RBM leads to a magnetization-temperature curve
shown in figure 5. Most of the generated samples are classified correctly, however, for some of
the samples at T = 2.2 the wrong temperature has been assigned.

Now, instead of training the RBM on only one particular temperature we train it on three
different temperatures simultaneously (T ≈ 1.0, T ≈ 2.2, T ≈ 3.0). In this case an example
for a generated sample is presented in figure 5. Based on the structure we expect that it
corresponds to a temperature T . Tc as one can already observe a formation of clusters but the
total magnetization is still small.

When the visible nodes are initialized in a configuration corresponding to T = 3.0 or T = 2.2 the
RBM generates samples close to the correct samples. The samples generated from a configuration
at T = 1.0 diverge quickly to the magnetization of T = 2.2.

6



Figure 5: Magnetizations and corresponding temperatures of the generated samples.

Figure 6: Generated sample from random noise from a RBM trained on three different temper-
atures (10000 Markov steps).

7



Figure 7: Absolute magnetizations of the training data as well as of the generated samples from
a single RBM. The different colors indicate the temperature of the initial configuration.

8


