Synthetic dimensions and topology: Towards Laughlin-like physics

Synthetic dimensions in quantum engineered systems

Leonardo Mazza
Ecole Normale Supérieure

Monday, November 20, 2017
Topology?

Gauss and Bonnet theorem

\[
\frac{1}{4\pi} \int_S \Omega(r) d^2r = 1 - g
\]

Classification of surfaces according to their genus

\[
g = 0
\]

\[
g = 1
\]

\[
g = 2
\]

Topological protection: deformations of an object do not modify the integral of the curvature

Leonardo Mazza
How can physics benefit from topology?

Let us assume energy bands well separated in energies. Focus on the lowest one, with Bloch states $|\Psi_k\rangle$.

$$i \int_{BZ} \left[\partial_{k_x} \langle \Psi_k | \partial_{k_y} | \Psi_k \rangle - \partial_{k_y} \langle \Psi_k | \partial_{k_x} | \Psi_k \rangle \right] \, dk = \nu \in \mathbb{Z}$$

A physical quantity related to this mathematical object will be **topologically** robust to small perturbations and imperfections.

- Example: the conductance of the quantum Hall effect
A striking consequence

Gap, insulating V_1

Gap, insulating V_2

Material #1

Material #2
A striking consequence

Interface between two gapped topologically distinct materials: there must be a “phase transition” in between.

Topologically protected gapless edge modes

This talk: topological edge modes of the fractional quantum Hall effect in synthetic dimensions

Leonardo Mazza
Outline

Introduction #1: The edge modes of the fractional quantum Hall effect

Introduction #2: Synthetic dimensions

Results: Edge modes of the fractional quantum Hall effect in synthetic dimensions

Conclusions and Perspectives
The fractional quantum Hall effect and its gapless edge modes

Introduction
The fractional quantum Hall effect

- Two-dimensional electron gas with perpendicular magnetic field
- Gapped phases at some fractional fillings $\nu = p/q$
- Strongly correlated wavefunctions
- Crucial role of interactions

Mathematical expression:

$$\nu = \frac{N}{N_\Phi}$$

$$\sigma_{xy} = \nu \frac{e^2}{h}$$
The Laughlin wavefunction

\[\nu = \frac{1}{m} \quad m \text{ odd} \]

\[\Psi_{\text{Laughlin}}(z_1, \ldots, z_N) = \prod_{i<j} (z_i - z_j)^m \prod_{i<j} e^{-|z_i|^2/4\ell_B^2} \]

1) Quasi-hole excitations in the bulk with fractional charge \(e^* = e/m \)
 - Motivate the introduction of the concept of anyons
2) Gapless edge modes (chiral) due to a boundary confining potential

\(m = 3 \)

Leonardo Mazza
The Laughlin wavefunction

\[\psi_{\text{Laughlin}}(z_1, \ldots, z_N) = \prod_{i<j} (z_i - z_j)^m \prod_{i<j} e^{-|z_i|^2/4\ell_B^2} \]

1) Quasi-hole excitations in the bulk with fractional charge \(e^* = e/m \)
 - Motivate the introduction of the concept of anyons
2) Gapless edge modes (chiral) due to a boundary confining potential
Hydrodynamics of edges

Boundary deformation
\[\rho(x, t) = n_{e, \text{bulk}} h(x, t) \]

Fractional quantum Hall fluid with \(\nu = 1/3 \)

\[\frac{\partial \rho}{\partial t} + \nu \frac{\partial \rho}{\partial x} = 0 \quad \text{and the velocity is} \quad \nu = \frac{|E|}{|B|} \]

Elementary excitations with unconventional properties

\[\psi_{qp}(x) \sim e^{i\phi[\hat{b}_k, \hat{b}^\dagger_k]}(x) \]

\[\psi_{qp}(x)\psi_{qp}(x') = e^{\frac{i\pi}{3}} \psi_{qp}(x')\psi_{qp}(x) \]

\[\Psi_F(x) \sim \psi_{qp}^3(x) \]

Wen PRB (1990)

H \sim \int \rho^2 dx

Bosonic excitations with linear spectrum

\[\hat{H} \sim E_0 + \sum_{k>0} \nu k \hat{b}^\dagger_k \hat{b}_k \]
Violation of Ohm’s law

Measurement the tunneling current-voltage (I-V) characteristics for electron tunneling from a bulk doped-GaAs normal metal into the abrupt edge of a fractional quantum Hall effect.

$$I \sim \tau^2 V^m$$

Electrons can tunnel through the barrier:
- from the wire to the Hall bar
- and viceversa

Striking violation of Ohm law!
Fitted exponent is around 2.7...

Chang, Pfeiffer, West, PRL (1996)
And much more!

Fractional chiral edge mode

FQHE

ferromagnet

Fractional chiral edge mode

FQHE

Fractionalized Majorana fermions, namely Parafermions

Clarke, Alicea, Shtengel, Nature Communications 4, 1348 (2012)
Goal of this talk:

To identify a setup with synthetic dimension with the same low-energy theory
Synthetic dimensions in ultra-cold gases

Introduction
Artificial gauge fields in cold atoms

Ultra-cold quantum gases for the study of quantum many-body physics.

- **Quantum simulation (Feynman)**
 - Genuine many-body quantum systems
 - Unprecedented control
 - High-fidelity measurements

- **Problem: atoms are neutral**
 - No coupling to a magnetic field of motional degrees of freedom
 - Quantum Hall physics precluded?

Solution: Engineering of ARTIFICIAL magnetic fields
Synthetic dimensions

First dimension, x position

Second dimension, y position
Synthetic dimensions

First dimension, x position

Second dimension, atomic SPIN
Experiments

- Three hyperfine states of fermionic ytterbium 173Yb

- **Hopping in real space**: natural motion

- **Hopping in synthetic space**: laser induced, it can be a complex number and represent an artificial gauge field

- Position in synthetic space given by the magnetic properties of the gas

- Theory using free-fermions

Why synthetic dimensions

- Artificial gauge field
- Hard-wall boundaries in cold atoms

Limitations:
- Intrinsically discrete
- Typically short
- Strange form of interactions

Price, Ozawa, Goldman, PRA 95 023607 (2017)

- Four-dimensional (or higher) physics

Extensions to photonic systems
Carusotto and Zilberberg
Why synthetic dimensions

- Artificial gauge field
- Hard-wall boundaries in cold atoms
- Four-dimensional (or higher) physics

Limitations:
- Intrinsically discrete
- Typically short
- Strange form of interactions

Relevant for this talk:
- Synthetic dimensions can realize synthetic flux ladders
- There is interaction between the legs of the ladder

Advertisement:
See the talk of Saro Fazio for other theory ideas when putting periodic boundary conditions in the synthetic dimension
Fractional edge states in synthetic dimension

Marcello Calvanese Strinati, Davide Rossini, Simone Barbarino, Marcello Dalmonte, Rosario Fazio (Pisa and Trieste)

Eyal Cornfeld, Eran Sela (Tel Aviv University)
From 2D physics to ladders

Coupled-wire construction of the quantum Hall effect
- Bosonization of each wire (two counterpropagating modes with linear dispersion relation)
- Perturbative insertion of inter-wire coupling and detection of quantum-Hall instabilities

Fractional Quantum Hall Effect in an Array of Quantum Wires

C. L. Kane, Ranjan Mukhopadhyay, and T. C. Lubensky
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 27 August 2001; published 4 January 2002)

We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can develop instabilities to appropriate interwire electron hopping processes that drive the system into a variety of QH states. Some of the QH states are not included in the Haldane-Halperin hierarchy. In addition, we find operators allowed at any field that lead to novel crystals of Laughlin quasiparticles. We demonstrate that any QH state is the ground state of a Hamiltonian that we explicitly construct.

DOI: 10.1103/PhysRevLett.88.036401 PACS numbers: 71.10.Pm, 71.27.-a, 73.43.Cd, 73.43.--f
Coupled-wire construction of the quantum Hall effect

- Bosonization of each wire (two counterpropagating modes with linear dispersion relation)
- Perturbative insertion of inter-wire coupling and detection of quantum-Hall instabilities
Coupled-wire construction of the quantum Hall effect

- Bosonization of each wire (two counterpropagating modes with linear dispersion relation)
- Perturbative insertion of inter-wire coupling and detection of quantum-Hall instabilities
An infinite array of wires is not necessary in order to have fractional edge modes
• Two are enough: a flux ladder! clearly to be engineered with synthetic dimensions 😊
• Topological protection is lost: no spatial distance of counterpropagating edge modes, back-scattering possible

Laughlin-like physics

...but see also works by Le Hur and Petrescu
Laughlin-like states in ladders

- Fractional edge modes appearing at $\nu = 1/p$
 - For bosons: p is even
 - For fermions: p is odd

- $p = 1$ is analogous to the integer quantum Hall effect and no interactions are necessary

- $p > 1$ requires interactions and can be efficiently addressed with matrix-product states

- The calculation is perturbative in t_\perp and is based on bosonization

Cornfeld and Sela PRB 2015
“Laughlin”-like physics @ \(v = 1 \)
Free fermions for $\nu=1$

\[\hat{H} = -t \sum_j \sum_{m=\pm\frac{1}{2}} e^{i\Phi m} \hat{c}^\dagger_{j,m} \hat{c}_{j+1,m} + H.c. \]

\[+ t_\perp \sum_j \left[c^\dagger_{j,\frac{1}{2}} c_{j,-\frac{1}{2}} + H.c. \right] \]

Two counterpropagating modes with almost opposite polarization

In spin language, a helical region

Two counterpropagating modes with almost opposite polarization

$\Phi = \frac{\Phi}{2}$

$\nu = 1$

\[n = \frac{\Phi}{\pi} \]
Observable quantities (beyond band structure)

Observable signatures of the presence of the IQHE-like region
- Chiral current
- Entanglement entropy
- Central charge
by varying the chemical potential (or the flux) across the commensurate value

\[\eta = \frac{\Phi}{\pi} \]

Benchmark for the simulations in the interacting regime!
Laughlin-like physics @ $\nu = 1/2$
The bosonic flux ladder

\[\hat{H} = -t \sum_j \sum_{m=\pm \frac{1}{2}} e^{i \Phi_m} \hat{b}^\dagger_{j,m} \hat{b}_{j+1,m} + H.c. \]
\[+ t_\perp \sum_j \left[\hat{b}^\dagger_{j,\frac{1}{2}} \hat{b}_{j,\frac{1}{2}} - \frac{1}{2} + H.c. \right] \]
\[+ V_\perp \sum_j \hat{n}_{j,\frac{1}{2}} + \frac{1}{2} \hat{n}_{j,-\frac{1}{2}} + \text{hard-core constraint} \]

First prediction to be tested:
- Universal signatures in the current profile along the \(\nu = \frac{1}{2} \) line

Cornfeld and Sela PRB 2015

Leonardo Mazza
“Universal” signatures

DMRG results for $L = 120$ and $t_\perp/t = 0.01$
The bosonic Laughlin-like state

DMRG results for L = 120 and $t_\perp/t = 0.1$, $N = 50$
The bosonic Laughlin-like state

Free fermions: $p = 1$

DMRG results for $L = 120$ and $t_{\perp}/t = 0.1$ $N = 50$
The bosonic Laughlin-like state

DMRG results for $L = 120$ and $t_{\perp}/t = 0.1$ \(N = 50 \)
Beyond small inter-leg couplings

DMRG results for $L = 120$ and $t_\perp / t = 0.1$ \(N = 50 \)

What happens to the Laughlin-like state when the double-cusp is lost?

Alternative characterization?
Laughlin-like physics $\nu = 1/3$
The fermionic Laughlin-like state?

\[\hat{H} = -t \sum_j \sum_{m=\pm \frac{1}{2}} e^{i \Phi m} \hat{c}_{j,m}^\dagger \hat{c}_{j+1,m} + H.c. \]
\[+ t_\perp \sum_j \left[\hat{c}_{j,\frac{1}{2}}^\dagger \hat{c}_{j,-\frac{1}{2}} + H.c. \right] \]
\[+ U \sum_j \hat{n}_{j,+\frac{1}{2}} \hat{n}_{j,-\frac{1}{2}} \]

\[\nu = 1/3 \]
\[\nu = 1 \]

\[\frac{\Phi}{\pi} = \frac{N}{L} \]
\[\frac{\Phi}{\pi} = \frac{N_\Phi}{L} \]
Long-range interactions

Exactly-solvable limit

- Shoulder potential
\[V(r) = \begin{cases}
U & \text{for } r \leq \xi \\
0 & \text{for } r > \xi.
\end{cases} \]

- Nearest-neighbor Hard-core
\[U \gg t \]

Idea

the original model can be remapped into a model with:

- \(\xi' = 0 \)
- \(L' = L - (N - 1)\xi \)

A model with \(\nu = 1/p \) can be remapped to \(\nu = 1 \)
Long-range interactions

\begin{align*}
\text{Idea} & \quad \text{the original model can be remapped} \\
& \quad \text{into a model with:} \\
& \quad \cdot \text{A model with } n = 1/p \text{ can be remapped to } n = 1 \\text{.} \\
& \quad \text{The actual system is at } \nu = 1/3, \\
& \quad \text{with } \xi = 3, \ L = 225, \ \Phi \approx 0.658\pi \\
& \quad \cdot \text{Nearest-neighbor Hard-core} \\
& \quad U \gg t
\end{align*}

A model with \(\nu = 1/p \) can be remapped to \(\nu = 1 \)
Experimental considerations
Harmonic confinement

\[\hat{H} = -t \sum_j \sum_{m=\pm \frac{1}{2}} e^{i\Phi_m} \hat{c}_{j,m}^\dagger \hat{c}_{j+1,m} + H.c. \]
\[+ t_{\perp} \sum_j \left[\hat{c}_{j,\frac{1}{2}}^\dagger \hat{c}_{j,-\frac{1}{2}} + H.c. \right] \]
\[+ \sum_{m=\pm \frac{1}{2}} \sum_j w(j - j_0)^2 \hat{n}_{j,m} \]

High sensibility even to very weak traps

Box potential necessary

Free-fermion simulation with \(L = 240 \), \(N = 120 \), and \(t_{\perp}/t = 0.2 \)

Leonardo Mazza
Temperature

\[\hat{H} = -t \sum_j \sum_{m=\pm \frac{1}{2}} \left[e^{i\Phi m} \hat{c}^\dagger_{j,m} \hat{c}_{j+1,m} + H.c. \right] + t_\perp \sum_j \left[\hat{c}^\dagger_{j,\frac{1}{2}} \hat{c}_{j,-\frac{1}{2}} + H.c. \right] \]
Conclusions

Our goal: fractional edge modes in synthetic ladders

Our result: synthetic dimensions are an interesting route to strongly-correlated physics

Key points:

- Signatures of Laughlin-like physics in bosonic and fermionic ladders
- Characterization in terms of a measurable observable (current)
- Experimental characterization: trap is bad, temperature is manageable

Perspectives

Is there an equilibrium observable that is quantized to the fractions described so far?

(my personal holy-grail)

Work in progress

Further insights in the physics of FQHE-like states in ladders:
- What happens increasing the inter-wire coupling?
- How many legs to move from Laughlin-like to Laughlin?
- Bulk fractional quasi-particles?
- Experiments?
Synthetic dimensions and topology: an interesting collaboration

Thank you for your attention